Advertisement

International Journal of Computer Vision

, Volume 83, Issue 2, pp 164–177 | Cite as

A Regularized Framework for Feature Selection in Face Detection and Authentication

  • Augusto Destrero
  • Christine De Mol
  • Francesca OdoneEmail author
  • Alessandro Verri
Article

Abstract

This paper proposes a general framework for selecting features in the computer vision domain—i.e., learning descriptions from data—where the prior knowledge related to the application is confined in the early stages. The main building block is a regularization algorithm based on a penalty term enforcing sparsity. The overall strategy we propose is also effective for training sets of limited size and reaches competitive performances with respect to the state-of-the-art. To show the versatility of the proposed strategy we apply it to both face detection and authentication, implementing two modules of a monitoring system working in real time in our lab. Aside from the choices of the feature dictionary and the training data, which require prior knowledge on the problem, the proposed method is fully automatic. The very good results obtained in different applications speak for the generality and the robustness of the framework.

Keywords

Feature selection Learning from examples Regularized methods Lasso regression Thresholded Landweber Face detection Face authentication Real-time system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: application to face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041. CrossRefGoogle Scholar
  2. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces versus fisherfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19, 711–720. CrossRefGoogle Scholar
  3. Brown, M., Costen, N. P., & Akamatsu, S. (2004). Efficient calculation of the complete optimal classification set. In Proc. of the 17th ICPR. Google Scholar
  4. Candes, E., & Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351. CrossRefMathSciNetzbMATHGoogle Scholar
  5. Chen, S. S., Donoho, D., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 20(1), 33–61. CrossRefMathSciNetGoogle Scholar
  6. Daubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57, 1413–1457. CrossRefMathSciNetzbMATHGoogle Scholar
  7. De Mol, C., Mosci, S., Traskine, M. S., & Verri, A. (2007). A regularized method for selecting nested groups of relevant genes from microarray data (Technical Report DISI-TR-07-04). Dipartimento di informatica e scienze dell’informazione, Universita’ di Genova. Available at http://arxiv.org/abs/0809.1777.
  8. Destrero, A., De Mol, C., Odone, F., & Verri, A. (2007a, to appear). A sparsity-enforcing method for learning face features. In IEEE Transactions on Image Processing. Google Scholar
  9. Destrero, A., De Mol, C., Odone, F., & Verri, A. (2007b). A regularized approach to feature selection for face detection. In Yagi, Y. et al. (Eds.), LNCS : Vol. 4844. Proc. of the Asian conference on computer vision, ACCV (pp. 881–890). Berlin: Springer. Google Scholar
  10. Etemad, K., & Chellappa, R. (1997). Discriminant analysis for recognition of human face images. Journal of the Optical Society of America A, 14, 1724–1733. CrossRefGoogle Scholar
  11. Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. In European conference on computational learning theory (pp. 23–37). Google Scholar
  12. Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2), 337–407 CrossRefMathSciNetGoogle Scholar
  13. Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6). Google Scholar
  14. Guyon, I., & Elisseeff, E. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182. CrossRefzbMATHGoogle Scholar
  15. Hadid, A., Pietikäinen, M., & Li, S. Z. (2007). Learning personal specific facial dynamics for face recognition from videos. In AMFG07 (pp. 1–15). Google Scholar
  16. Joachims, T. (1999). Making large-scale SVM learning practical. In Schölkopf, B., Burges, C., & Smola, A. (Eds.), Advances in kernel methods—support vector learning. Cambridge: MIT Press. Google Scholar
  17. Lanzarotti, R., Arca, S., & Campadelli, P. (2006). A face recognition system based on automatically determined facial fiducial points. Pattern recognition, 39(3), 432–443. CrossRefzbMATHGoogle Scholar
  18. Li, S. Z., & Zhang, Z. Q. (2004). FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1112–1123. CrossRefGoogle Scholar
  19. Liu, X., Chen, T., & Vijaya Kumar, B. V. K. (2003). On modeling variations for face authentication. Pattern Recognition, 36(2), 313–328. CrossRefGoogle Scholar
  20. Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., & Tang, B. (2004). Face authentication competition on the banca database. In LNCS : Vol. 3072. Biometric authentication. Springer: Berlin. Google Scholar
  21. Moghaddam, B., & Pentland, A. (1997). Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 696–710. CrossRefGoogle Scholar
  22. Mohan, A., Papageorgiou, C., & Poggio, T. (2001). Example-based object detection in images by components. IEEE Transactions on PAMI, 23(4), 349–361. Google Scholar
  23. Olshauser, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37(23), 3311–3325. CrossRefGoogle Scholar
  24. Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: an application to face detection. In Proceedings IEEE int. conference on computer vision and pattern recognition (CVPR). Google Scholar
  25. Papageorgiou, C., & Poggio, T. (2000). A trainable system for object detection. International Journal of Computer Vision, 38(1), 15–33. CrossRefzbMATHGoogle Scholar
  26. Pentland, A., Moghaddam, B., & Starner, T. (1994). View-based and modular eigenspaces for face recognition. In IEEE int. conf. on computer vision and pattern recognition (CVPR) (pp. 84–91). Google Scholar
  27. Pentland, A., Moghaddam, B., & Starner, T. (1998). Estimation of eye, eyebrow and nose features in videophone sequences. In International workshop on very low bitrate video coding (VLBV 98) (pp. 101–104). Google Scholar
  28. Roth, V. (2004). The generalized lasso. IEEE Transactions on Neural Networks, 15(1), 16–28. CrossRefGoogle Scholar
  29. Schapire, R. E., & Singer, Y. (1999). Improved boosting using confidence-rated predictions. Machine Learning, 37(3), 297–336. CrossRefzbMATHGoogle Scholar
  30. Schneiderman, H., & Kanade, T. (2000). A statistical method for 3D object detection applied to faces and cars. In International conference on computer vision. Google Scholar
  31. Tan, X., & Triggs, B. (2007). Enhanced local texture feature sets for face recognition under difficult lighting conditions. In AMFG (pp. 168–182). Google Scholar
  32. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society B, 58(1), 267–288. MathSciNetzbMATHGoogle Scholar
  33. Tipping, M. (2001). Sparse Bayesian learning and the relevant vector machine. Journal of Machine Learning Research, 1, 211–244 CrossRefMathSciNetzbMATHGoogle Scholar
  34. Turk, M. A., & Pentland, A. P. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86. CrossRefGoogle Scholar
  35. Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 1–6. Google Scholar
  36. Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley. zbMATHGoogle Scholar
  37. Verschae, R., & Ruiz del Solar, J. (2003). A hybrid face detector based on an asymmetrical Adaboost cascade detector and a wavelet-Bayesian-detector. In Lecture notes in computer science : Vol. 2686. Computational methods in neural modeling. Berlin: Springer. CrossRefGoogle Scholar
  38. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal on Computer Vision, 57(2), 137–154. CrossRefGoogle Scholar
  39. Wang, H., Li, P., & Zhang, T. (2008). Histogram feature-based fisher linear discriminant for face detection. Neural Computing and Applications, 17(1), 49–58. CrossRefGoogle Scholar
  40. Weston, J., Elisseeff, A., Scholkopf, B., & Tipping, M. (2003). The use of zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3, 1439–1461 CrossRefzbMATHGoogle Scholar
  41. Wiskott, L., Fellous, J., Kuiger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 775–779. CrossRefGoogle Scholar
  42. Yang, M.-H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 34–58. CrossRefGoogle Scholar
  43. Zhang, D., Li, S. Z., & Gatica-Perez, D. (2004). Real-time face detection using boosting in hierarchical feature spaces. In Proc. of ICPR. Google Scholar
  44. Zhao, W., Chellappa, R., Rosenfeld, A., & Phillips, P. J. (2003). Face recognition: A literature survey. ACM computing surveys (pp. 399–458). Google Scholar
  45. Zhu, J., Rosset, S., Hastie, T., & Tibshirani, R. (2004). 1-norm support vector machines. In Advances in neural information processing systems 16. MIT Press: Cambridge. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Augusto Destrero
    • 1
    • 3
  • Christine De Mol
    • 2
  • Francesca Odone
    • 1
    Email author
  • Alessandro Verri
    • 1
  1. 1.DISIUniversità degli Studi di GenovaGenovaItaly
  2. 2.Department of Mathematics and ECARESUniversite Libre de BruxellesBrusselsBelgium
  3. 3.Imavis s.r.l.GenovaItaly

Personalised recommendations