Multi-Spectral Imaging by Optimized Wide Band Illumination

Article

Abstract

We present a novel active imaging approach that uses optimized wide band filtered illumination to obtain multi-spectral reflectance information. Our optimization algorithm utilizes light source and camera spectral information in order to maximize the signal strength and the robustness to noise. Through the use of active wide band illumination, our system can obtain material reflectance information in the presence of moderate (indoor) unknown ambient illumination. Our method is very simple and does not require special equipment. It can be used by photographers to obtain material properties in uncontrolled environment and to synthesize captured scenes under arbitrary illumination.

Keywords

Multi-spectral imaging Multiplexed illumination 

References

  1. Abrardo, A., Alparone, L., Cappellini, V., & Prosperi, A. (1999). Color constancy from multispectral images. In Proc. IEEE int’l conf. image processing (Vol. 3, pp. 570–574). Google Scholar
  2. Connah, D., Hardeberg, J., & Westland, S. (2004). Comparison of linear spectral reconstruction methods for multispectral imaging. In International conference on image processing, ICIP’04 (Vol. 3, pp. 1497–1500). Google Scholar
  3. Finlayson, G. D. (1995). Coefficient color constancy. PhD thesis, Simon Fraser University (Canada). Google Scholar
  4. Gat, N. (2000). Imaging spectroscopy using tunable filters: A review. In Proc. SPIE wavelet application VII (Vol. 4056, pp. 50–64). Google Scholar
  5. Grossberg, M., & Nayar, S. (2004). Modeling the space of camera response functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1272–1282. CrossRefGoogle Scholar
  6. Hansen, P., Jacobsen, M., Rasmussen, J., & Sørensen, H. (1999). The PP-TSVD algorithm for image restoration problems. In P.C. Hansen, B.H. Jacobsen, K. Mosegaard (Eds.) Lecture notes in Earth sciences: Vol. 92. Methods and applications of inversion. Google Scholar
  7. Imai, F., Quan, S., Rosen, M., & Berns, R. (2001). Digital camera filter design for colorimetric and spectral accuracy. In Proc. of third international conference on multispectral color science (pp. 13–16) Google Scholar
  8. Imai, F. H., Rosen, M. R., & Berns, R. S. (2002). Comparison of spectrally narrow-band capture versus wide-band with a prior sample analysis for spectral reflectance estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10), 17–25. Google Scholar
  9. Jaaskelainen, T., Parkkinen, J., & Toyooka, S. (1990). Vector-subspace model for color representation. Journal of the Optical Society of America A, 7(4), 725–730. CrossRefGoogle Scholar
  10. Koza, J. R. (1998). Genetic programming. In J. G. Williams & A. Kent (Eds.) Encyclopedia of computer science and technology (Vol. 39, pp. 29–43). New York: Marcel-Dekker. Google Scholar
  11. Maloney, L., & Wandell, B. (1987). Color constancy: a method for recovering surface spectral reflectance. In Readings in computer vision: issues, problems, principles, and paradigms. Google Scholar
  12. Monnet, G. (1995). 3d spectroscopy with large telescopes: Past, present and prospects. In Tridimensional optical spectroscopic methods in astronomy (Vol. 71, pp. 12–17). Google Scholar
  13. Nayar, S., Krishnan, G., Grossberg, M. D., & Raskar, R. (2006a). Fast separation of direct and global components of a scene using high frequency illumination. In ACM trans. graph. (also Proc. of ACM SIGGRAPH). Google Scholar
  14. Nayar, S. K., Krishnan, G., Grossberg, M. D., & Raskar, R. (2006b). Fast separation of direct and global components of a scene using high frequency illumination. In SIGGRAPH ’06: ACM SIGGRAPH 2006 papers (pp. 935–944). New York: ACM Press. CrossRefGoogle Scholar
  15. Novati, G., Pellegri, P., & Schettini, R. (2005). An affordable multispectral imaging system for the digital museum. International Journal on Digital Libraries, 5(3), 167–178. CrossRefGoogle Scholar
  16. Park, M.-H., Lee, J.-I., Grossberg, M. D., & Nayar, S. K. (2007). Multispectral imaging using multiplexed illumination. In ICCV. Google Scholar
  17. Schechner, Y., & Nayar, S. (2002). Generalized mosaicing: wide field of view multispectral imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10), 1334–1348. CrossRefGoogle Scholar
  18. Schechner, Y., & Nayar, S. (2004). Uncontrolled modulation imaging. In IEEE conference on computer vision and pattern recognition (CVPR) (Vol. II, pp. 197–204). Google Scholar
  19. Schechner, Y. Y., Nayar, S. K., & Belhumeur, P. N. (2003). A theory of multiplexed illumination. In ICCV (Vol. 02, p. 808). Google Scholar
  20. Slater, D., & Healey, G. (1999). Material classification for 3d objects in aerial hyspectral images. In Proc. computer vision and pattern recognition (Vol. 2, pp. 268–273). Google Scholar
  21. Stokman, H., Gevers, T., & Koenderink, J. (2000). Color measurement by imaging spectrometry. Computer Vision and Image Understanding, 79(2), 236–249. CrossRefGoogle Scholar
  22. Villemaire, A., Fortin, S., Lafond, C., et al. (1998). High-resolution airborne imaging spectrometer. In Proceedings of SPIE. Google Scholar
  23. Wellman, J. (1981). Multispectral mapper: Imaging spectroscopy as applied to the mapping of earth resources. In Proc. SPIE imaging spectroscopy (Vol. 268, pp. 64–73). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingChina
  2. 2.Gwangju Institute of Science and TechnologyGwangjuSouth Korea
  3. 3.Microsoft Research AsiaBeijingChina

Personalised recommendations