International Journal of Computer Vision

, Volume 86, Issue 2–3, pp 127–139 | Cite as

Generalized Gamut Mapping using Image Derivative Structures for Color Constancy

  • Arjan Gijsenij
  • Theo Gevers
  • Joost van de Weijer
Open Access
Article

Abstract

The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant.

Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed.

Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and real-world scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut mappings provide more stable solutions, and (4) the fusion strategy based on the intersection of feasible sets provides better color constancy results than the union of the feasible sets.

Keywords

Color Constancy Illuminant estimation Gamut mapping n-jet 

References

  1. Barnard, K. (2000). Improvements to gamut mapping colour constancy algorithms. In European conference on computer vision (pp. 390–403). Google Scholar
  2. Barnard, K., Martin, L., Funt, B., & Coath, A. (2002). A data set for color research. Color Research and Application, 27(3), 147–151. CrossRefGoogle Scholar
  3. Bianco, S., Gasparini, F., & Schettini, R. (2007). Combining strategies for white balance. In Digital photography III. IS&T. Google Scholar
  4. Brainard, D. H., & Freeman, W. T. (1997). Bayesian color constancy. Journal of the Optical Society of America A, 14, 1393–1411. CrossRefGoogle Scholar
  5. Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of the Franklin Institute, 310(1), 1–26. CrossRefMathSciNetGoogle Scholar
  6. Ciurea, F., & Funt, B. V. (2003). A large image database for color constancy research. In Proceedings of the eleventh color imaging conference (pp. 160–164). IS&T—The Society for Imaging Science and Technology. Google Scholar
  7. Delahunt, P. B., & Brainard, D. H. (2004). Does human color constancy incorporate the statistical regularity of natural daylight? Journal of Vision, 4(2), 57–81. CrossRefGoogle Scholar
  8. Di Zenzo, S. (1986). A note on the gradient of a multi-image. Computer Vision, Graphics and Image Processing, 33(1), 116–125. CrossRefGoogle Scholar
  9. D’Zmura, M., Iverson, G., & Singer, B. (1995). Probabilistic color constancy. In Geometric representations of perceptual phenomena (pp. 187–202). Lawrence Erlbaum Associates. Google Scholar
  10. Fairchild, M. D. (2005). Wiley-IS&T series in imaging science and technology. Color appearance models (2nd ed.). Chichester: Wiley. ISBN 0-470-01216-1. Google Scholar
  11. Finalyson, G. D. (1996). Color in perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10), 1034–1038. CrossRefGoogle Scholar
  12. Finlayson, G. D., & Hordley, S. D. (2000). Improving gamut mapping color constancy. IEEE Transactions on Image Processing, 9(10), 1774–1783. CrossRefGoogle Scholar
  13. Finlayson, G. D., & Trezzi, E. (2004). Shades of gray and colour constancy. In Proceedings of the twelfth color imaging conference (pp. 37–41). IS&T—The Society for Imaging Science and Technology. Google Scholar
  14. Finlayson, G. D., & Xu, R. (2003). Convex programming color constancy. In IEEE workshop on color and photometric methods in computer vision, in conjunction with ICCV’03 (pp. 1–8). Google Scholar
  15. Finlayson, G. D., Hordley, S. D., & Hubel, P. M. (2001). Color by correlation: a simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1209–1221. CrossRefGoogle Scholar
  16. Finlayson, G. D., Hordley, S. D., & Xu, R. (2005). Convex programming colour constancy with a diagonal-offset model. In Proceedings of IEEE international conference on image processing (pp. 948–951). Google Scholar
  17. Finlayson, G. D., Hordley, S. D., & Tastl, I. (2006). Gamut constrained illuminant estimation. International Journal of Computer Vision, 67(1), 93–109. CrossRefGoogle Scholar
  18. Forsyth, D. A. (1990). A novel algorithm for color constancy. International Journal of Computer Vision, 5(1), 5–36. CrossRefGoogle Scholar
  19. Foster, D. H., Amano, K., & Nascimento, S. M. C. (2006). Color constancy in natural scenes explained by global image statistics. Visual Neuroscience, 23(3–4), 341–349. Google Scholar
  20. Gehler, P. V., Rother, C., Blake, A., Minka, T., & Sharp, T. (2008). Bayesian color constancy revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). Google Scholar
  21. Gevers, T., & Smeulders, A. W. M. (2000). Pictoseek: combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing, 9(1), 102–119. CrossRefGoogle Scholar
  22. Gijsenij, A., & Gevers, T. (2007). Color constancy using natural image statistics. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). Google Scholar
  23. Gijsenij, A., Gevers, T., & van de Weijer, J. (2007). Color constancy by derivative-based gamut mapping. In Photometric analysis for computer vision (PACV’07), in conjunction with ICCV’07, Rio de Janeiro, Brazil, October 2007. Google Scholar
  24. Hordley, S. D. (2006). Scene illuminant estimation: past, present, and future. Color Research and Application, 31(4), 303–314. CrossRefGoogle Scholar
  25. Kass, M., & Witkin, A. (1987). Analyzing oriented patterns. Computer Vision, Graphics and Image Processing, 37(3), 362–385. CrossRefGoogle Scholar
  26. Koenderink, J. J., & van Doorn, A. J. (1987). Representation of local geometry in the visual system. Biological Cybernetics, 55(6), 367–375. MATHCrossRefMathSciNetGoogle Scholar
  27. Land, E. H. (1977). The retinex theory of color vision. Scientific American, 237(6), 108–128. MathSciNetCrossRefGoogle Scholar
  28. Schaefer, G., Hordley, S., & Finlayson, G. (2005). A combined physical and statistical approach to colour constancy. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 148–153). Washington: IEEE Computer Society. Google Scholar
  29. Shafer, S. A. (1985). Using color to separate reflection components. Color Research and Application, 10(4), 210–218. CrossRefGoogle Scholar
  30. van de Weijer, J., Gevers, T., & Gijsenij, A. (2007a). Edge-based color constancy. IEEE Transactions on Image Processing, 16(9), 2207–2214. CrossRefMathSciNetGoogle Scholar
  31. van de Weijer, J., Schmid, C., & Verbeek, J. J. (2007b). Using high-level visual information for color constancy. In Proceedings of the international conference on computer vision, Rio de Janeiro, Brazil. Google Scholar
  32. von Kries, J. (1970). Influence of adaptation on the effects produced by luminous stimuli. In D. L. MacAdam (Ed.), Sources of color vision (pp. 109–119). Cambridge: MIT Press. Google Scholar
  33. Yang, J., Stiefelhagen, R., Meier, U., & Waibel, A. (1998). Visual tracking for multimodal human computer interaction. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 140–147). Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Arjan Gijsenij
    • 1
  • Theo Gevers
    • 1
  • Joost van de Weijer
    • 2
  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.Computer Vision Center (CVC)BellaterraSpain

Personalised recommendations