Adaptive Stochastic Gradient Descent Optimisation for Image Registration

  • Stefan Klein
  • Josien P. W. Pluim
  • Marius Staring
  • Max A. Viergever
Open Access
Article

Abstract

We present a stochastic gradient descent optimisation method for image registration with adaptive step size prediction. The method is based on the theoretical work by Plakhov and Cruz (J. Math. Sci. 120(1):964–973, 2004). Our main methodological contribution is the derivation of an image-driven mechanism to select proper values for the most important free parameters of the method. The selection mechanism employs general characteristics of the cost functions that commonly occur in intensity-based image registration. Also, the theoretical convergence conditions of the optimisation method are taken into account. The proposed adaptive stochastic gradient descent (ASGD) method is compared to a standard, non-adaptive Robbins-Monro (RM) algorithm. Both ASGD and RM employ a stochastic subsampling technique to accelerate the optimisation process. Registration experiments were performed on 3D CT and MR data of the head, lungs, and prostate, using various similarity measures and transformation models. The results indicate that ASGD is robust to these variations in the registration framework and is less sensitive to the settings of the user-defined parameters than RM. The main disadvantage of RM is the need for a predetermined step size function. The ASGD method provides a solution for that issue.

Keywords

Image registration Optimisation Stochastic gradient descent Adaptive step sizes Parameter selection 

References

  1. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., & Marchal, G. (1995). Automated multi-modality image registration based on information theory. In Bizais, Y., Barillot, C., Di Paola, R. (Eds.), Information Processing in Medical Imaging (pp. 263–274). Dordrecht: Kluwer Academic. Google Scholar
  2. Cruz, P. (2005a). Almost sure convergence and asymptotical normality of a generalization of Kesten’s stochastic approximation algorithm for multidimensional case (Technical Report). Cadernos de Matemática, Série de Investigação, Collection of University of Aveiro, Department of Mathematics. http://193.136.81.248/dspace/handle/2052/74.
  3. Cruz, P. (2005b). Aproximação estocástica com valor do passo adaptativo. PhD thesis, University of Aveiro, Department of Mathematics. http://193.136.81.248/dspace/handle/2052/103.
  4. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302. CrossRefGoogle Scholar
  5. Hermosillo, G., Chefd’hotel, C., & Faugeras, O. (2002). Variational methods for multimodal image matching. International Journal of Computer Vision, 50(3), 329–343. MATHCrossRefGoogle Scholar
  6. Hu, S., Hoffman, E. A., & Reinhardt, J. M. (2001). Automatic lung segmentation for accurate quantitation of volumetric X-Ray CT images. IEEE Transactions on Medical Imaging, 20(6), 490–498. CrossRefGoogle Scholar
  7. Klein, S., Staring, M., & Pluim, J. P. W. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Transactions on Image Processing, 16(12), 2879–2890. CrossRefMathSciNetGoogle Scholar
  8. Kushner, H. J., & Yin, G. G. (2003). Stochastic Approximation and Recursive Algorithms and Applications (2nd edn.) New York: Springer. MATHGoogle Scholar
  9. Maintz, J. B. A., & Viergever, M. A. (1998). A survey of medical image registration. Medical Image Analysis, 2(1), 1–36. CrossRefGoogle Scholar
  10. Modersitzki, J. (2004). Numerical Methods for Image Registration. London: Oxford University Press. MATHGoogle Scholar
  11. Petersen, K. B., & Pedersen, M. S. (2007). The Matrix Cookbook. http://matrixcookbook.com.
  12. Plakhov, A., & Cruz, P. (2004). A stochastic approximation algorithm with step size adaptation. Journal of Mathematics and Sciences, 120(1), 964–973. MATHCrossRefMathSciNetGoogle Scholar
  13. Pluim, J. P. W., Maintz, J. B. A., & Viergever, M. A. (2003). Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 22(8), 986–1004. CrossRefGoogle Scholar
  14. Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22(3), 400–407. MATHCrossRefMathSciNetGoogle Scholar
  15. Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712–721. CrossRefGoogle Scholar
  16. Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1), article 32. Google Scholar
  17. Shi, Z. J., & Shen, J. (2005). Step-size estimation for unconstrained optimization methods. Computational & Applied Mathematics, 24(3), 399–416. CrossRefMathSciNetGoogle Scholar
  18. Sluimer, I., Prokop, M., & van Ginneken, B. (2005). Toward automated segmentation of the pathological lung in CT. IEEE Transactions on Medical Imaging, 24(8), 1025–1038. CrossRefGoogle Scholar
  19. Thévenaz, P., & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 9(12), 2083–2099. MATHCrossRefGoogle Scholar
  20. Viola, P., & Wells III, W. M. (1995). Alignment by maximization of mutual information. In Grimson, E., Shafer, S., Blake, A., & Sugihara, K. (Eds.), International Conference on Computer Vision (pp. 16–23). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  21. Vysochanskij, D. F., & Petunin, Y. I. (1980). Justification of the 3σ rule for unimodal distributions. Theory of Probability and Mathematical Statistics, 21, 25–36. MATHGoogle Scholar
  22. West, J., et al. (1997). Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography, 21(4), 554–566. CrossRefGoogle Scholar
  23. Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Stefan Klein
    • 1
  • Josien P. W. Pluim
    • 1
  • Marius Staring
    • 1
  • Max A. Viergever
    • 1
  1. 1.Image Sciences InstituteUniversity Medical Center UtrechtGA UtrechtThe Netherlands

Personalised recommendations