International Journal of Computer Vision

, Volume 84, Issue 2, pp 194–204 | Cite as

Scale Selection for Compact Scale-Space Representation of Vector-Valued Images

  • I. Vanhamel
  • C. Mihai
  • H. Sahli
  • A. Katartzis
  • I. Pratikakis
Article

Abstract

This paper investigates the scale selection problem for nonlinear diffusion scale-spaces. This topic comprises the notions of localization scale selection and scale space discretization. For the former, we present a new approach. It aims at maximizing the image content’s presence by finding the scale that has a maximum correlation with the noise-free image. For the latter, we propose to adapt the optimal diffusion stopping time criterion of Mrázek and Navara in such a way that it may identify multiple scales of importance.

Keywords

Scale selection Localization scale Scale-space discretization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, M., Sapiro, G., Marimont, D., & Heeger, D. (1998). Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3), 421–432. CrossRefGoogle Scholar
  2. Blomgren, P., & Chan, T. (1998). Color TV: total variation methods for restoration of vector valued images. IEEE Transactions on Image Processing, 7(3), 304–309. CrossRefGoogle Scholar
  3. Bresson, X., Vandergheynst, P., & Thiran, J.-P. (2005). Multiscale active contours. In 5th int. conf. on scale space and pde methods in computer vision (pp. 167–178). Google Scholar
  4. Catté, F., Lions, P.-L., Morel, J.-M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29(1), 182–193. MATHCrossRefMathSciNetGoogle Scholar
  5. Charbonnier, P. (1994). Reconstruction d’image: régularisation avec prise en compte desdiscontinuités. PhD, University of Nice-Sophia Antipolis. Google Scholar
  6. Geman, D., & Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), 367–383. CrossRefGoogle Scholar
  7. Gilboa, G., Sochen, N., & Zeevi, Y. (2004). Estimation of optimal PDE-based denoising in the SNR sense (CCIT report 499). Technion-Israel. Google Scholar
  8. Hadjidemetriou, E., Grossberg, M., & Nayar, S. (2002). Resolution selection using generalized entropies of multiresolution histograms. In European conference on computer vision (pp. 220–235). Google Scholar
  9. Hampel, F. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383–393. MATHCrossRefMathSciNetGoogle Scholar
  10. Katartzis, A., Vanhamel, I., & Sahli, H. (2005). A hierarchical Markovian model for multiscale region-based classification of vector-valued images. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 548–558. CrossRefGoogle Scholar
  11. Keeling, S., & Stollberger, R. (2002). Nonlinear anisotropic diffusion filtering for multiscale edge enhancement. Inverse Problems, 18(1), 175–190. MATHCrossRefMathSciNetGoogle Scholar
  12. Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50, 363–370. MATHCrossRefMathSciNetGoogle Scholar
  13. Lin, Z., & Shi, Q. (1999). An anisotropic diffusion PDE for noise reduction and thin edge preservation. In Int. conf. on image analysis and processing (pp. 102–107). Google Scholar
  14. Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 77–116. Google Scholar
  15. Mrázek, P. (2001). Selection of optimal stopping time for nonlinear diffusion filtering. In Scale-space and morphology in computer vision (pp. 290–298). Google Scholar
  16. Mrázek, P., & Navara, M. (2003). Selection of optimal stopping time for nonlinear diffusion filtering. International Journal of Computer Vision, 52(2/3), 189–203. CrossRefGoogle Scholar
  17. Mukhopadhyay, S., & Chanda, B. (2003). Multiscale morphological segmentation of gray-scale images. Transactions on Image Processing, 12(5), 533–549. CrossRefGoogle Scholar
  18. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639. CrossRefGoogle Scholar
  19. Petrovic, A., Divorra Escoda, O., & Vandergheynst, P. (2004). Multiresolution segmentation of natural images: From linear to non-linear scale-space representations. IEEE Transactions on Image Processing, 13(8), 1104–1114. CrossRefGoogle Scholar
  20. Pratikakis, I. (1998). Watershed-driven image segmentation. PhD, Vrije Universiteit Brussel. Google Scholar
  21. Pratikakis, I., Vanhamel, I., Sahli, H., Gatos, B., & Perantonis, S. (2006). Unsupervised watershed-driven region-based image retrieval. IEE Proceedings on Vision, Image and Signal Processing, 153(3), 313–322. CrossRefGoogle Scholar
  22. Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268. MATHCrossRefGoogle Scholar
  23. Sporring, J., & Weickert, J. (1999). Information measures in scale-spaces. IEEE Transactions on Information Theory, 45, 1051–1058. MATHCrossRefMathSciNetGoogle Scholar
  24. Sporring, J., Colios, C., & Trahanias, P. (2000). Generalized scale-selection. IEEE International Conference on Image Processing, 1, 920–923. Google Scholar
  25. Vanhamel, I. (2006). Vector valued nonlinear diffusion and its application to image segmentation. PhD thesis, ETRO/IRIS, Vrije Universiteit Brussel, Brussels-Belgium. Google Scholar
  26. Vanhamel, I., Pratikakis, I., & Sahli, H. (2003). Multi-scale gradient watersheds of color images. IEEE Transactions on Image Processing, 12(6), 617–626. CrossRefGoogle Scholar
  27. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. CrossRefGoogle Scholar
  28. Weickert, J. (1998). Anisotropic diffusion in image processing. Teubner-Verlag. Google Scholar
  29. Weickert, J. (1999). Coherence-enhancing diffusion of colour images. Image and Vision Computing, 17(3-4), 201–212. CrossRefGoogle Scholar
  30. Whitaker, R. (1993). Geometry-limited diffusion. PhD Thesis, The University of North Carolina. Google Scholar
  31. Whitaker, R., & Gerig, G. (1994). Vector-valued diffusion. In Geometry-driven diffusion in computer vision (pp. 93–134). Google Scholar
  32. You, Y.-L., Xu, W., Tannenbaum, A., & Kaveh, M. (1996). Behavioral analysis of anisotropic diffusion in image processing. IEEE Transactions on Image Processing, 5(11), 1539–1553. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. Vanhamel
    • 1
  • C. Mihai
    • 1
  • H. Sahli
    • 1
  • A. Katartzis
    • 2
  • I. Pratikakis
    • 3
  1. 1.Vrije Universiteit Brussel, ETRO-IRISBrusselsBelgium
  2. 2.EEE Dep.Imperial College, CSP GroupLondonUK
  3. 3.NCSR “Demokritos”, IIT, Computational Intelligence LaboratoryAthensGreece

Personalised recommendations