EPnP: An Accurate O(n) Solution to the PnP Problem

  • Vincent Lepetit
  • Francesc Moreno-Noguer
  • Pascal Fua
Article

Abstract

We propose a non-iterative solution to the PnP problem—the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences—whose computational complexity grows linearly with n. This is in contrast to state-of-the-art methods that are O(n 5) or even O(n 8), without being more accurate. Our method is applicable for all n≥4 and handles properly both planar and non-planar configurations. Our central idea is to express the n 3D points as a weighted sum of four virtual control points. The problem then reduces to estimating the coordinates of these control points in the camera referential, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix and solving a small constant number of quadratic equations to pick the right weights. Furthermore, if maximal precision is required, the output of the closed-form solution can be used to initialize a Gauss-Newton scheme, which improves accuracy with negligible amount of additional time. The advantages of our method are demonstrated by thorough testing on both synthetic and real-data.

Keywords

Pose estimation Perspective-n-Point Absolute orientation 

References

  1. Abdel-Aziz, Y. I., & Karara, H. M. (1971). Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In Proc. ASP/UI symp. close-range photogrammetry (pp. 1–18). Google Scholar
  2. Ansar, A., & Daniilidis, K. (2003). Linear pose estimation from points or lines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 578–589. CrossRefGoogle Scholar
  3. Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-D points sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 698–700. CrossRefGoogle Scholar
  4. Chang, Y., & Rockwood, A. P. (1994). A generalized de Casteljau approach to 3D free-form deformation. In ACM SIGGRAPH (pp. 257–260). Google Scholar
  5. DeMenthon, D., & Davis, L. S. (1995). Model-based object pose in 25 lines of code. International Journal of Computer Vision, 15, 123–141. CrossRefGoogle Scholar
  6. Dhome, M., Richetin, M., & Lapreste, J.-T. (1989). Determination of the attitude of 3d objects from a single perspective view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(12), 1265–1278. CrossRefGoogle Scholar
  7. Fiore, P. D. (2001). Efficient linear solution of exterior orientation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 140–148. MathSciNetCrossRefGoogle Scholar
  8. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications ACM, 24(6), 381–395. MathSciNetCrossRefGoogle Scholar
  9. Gao, X. S., Hou, X. R., Tang, J., & Cheng, H. F. (2003). Complete solution classification for the perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 930–943. CrossRefGoogle Scholar
  10. Golub, G. H., & Van Loan, C. F. (1996). Matrix computations. Johns Hopkins studies in mathematical sciences. Baltimore: Johns Hopkins Press. MATHGoogle Scholar
  11. Haralick, R. M., Lee, D., Ottenburg, K., & Nolle, M. (1991). Analysis and solutions of the three point perspective pose estimation problem. In Conference on computer vision and pattern recognition (pp. 592–598). Google Scholar
  12. Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press. MATHGoogle Scholar
  13. Horaud, R., Conio, B., Leboulleux, O., & Lacolle, B. (1989). An analytic solution for the perspective 4-point problem. Computer Vision, Graphics, and Image Processing, 47(1), 33–44. CrossRefGoogle Scholar
  14. Horaud, R., Dornaika, F., & Lamiroy, B. (1997). Object pose: The link between weak perspective, paraperspective, and full perspective. International Journal of Computer Vision, 22(2), 173–189. CrossRefGoogle Scholar
  15. Horn, B. K. P., Hilden, H. M., & Negahdaripour, S. (1988). Closed-form solution of absolute orientation using orthonormal matrices. Journal of the Optical Society of America, 5(7), 1127–1135. MathSciNetCrossRefGoogle Scholar
  16. Kipnis, A., & Shamir, A. (1999). Cryptanalysis of the HFE public key cryptosystem by relinearization. In Advances in cryptology—CRYPTO’99 (Vol. 1666/1999, pp. 19–30). Berlin: Springer. Google Scholar
  17. Kumar, R., & Hanson, A. R. (1994). Robust methods for estimating pose and a sensitivity analysis. Computer Vision and Image Understanding, 60(3), 313–342. CrossRefGoogle Scholar
  18. Lepetit, V., & Fua, P. (2006). Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9), 1465–1479. CrossRefGoogle Scholar
  19. Lowe, D. G. (1991). Fitting parameterized three-dimensional models to images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 441–450. MathSciNetCrossRefGoogle Scholar
  20. Lu, C.-P., Hager, G. D., & Mjolsness, E. (2000). Fast and globally convergent pose estimation from video images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(6), 610–622. CrossRefGoogle Scholar
  21. McGlove, C., Mikhail, E., & Bethel, J. (Eds.) (2004). Manual of photogrametry. American society for photogrammetry and remote sensing (5th edn.). Google Scholar
  22. Moreno-Noguer, F., Lepetit, V., & Fua, P. (2007). Accurate non-iterative o(n) solution to the pnp problem. In IEEE international conference on computer vision. Rio de Janeiro, Brazil. Google Scholar
  23. Oberkampf, D., DeMenthon, D., & Davis, L. S. (1996). Iterative pose estimation using coplanar feature points. Computer Vision and Image Understanding, 63, 495–511. CrossRefGoogle Scholar
  24. Quan, L., & Lan, Z. (1999). Linear N-point camera pose determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(7), 774–780. CrossRefGoogle Scholar
  25. Schweighofer, G., & Pinz, A. (2006). Robust pose estimation from a planar target. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2024–2030. CrossRefGoogle Scholar
  26. Sederberg, T. W., & Parry, S. R. (1986). Free-form deformation of solid geometric models. ACM SIGGRAPH, 20(4). Google Scholar
  27. Skrypnyk, I., & Lowe, D. G. (2004). Scene modelling, recognition and tracking with invariant image features. In International symposium on mixed and augmented reality (pp. 110–119). Arlington, VA. Google Scholar
  28. Stewènius, H., Engels, C., & Nister, D. (2006). Recent developments on direct relative orientation. International Society for Photogrammetry and Remote Sensing, 60, 284–294. CrossRefGoogle Scholar
  29. Triggs, B. (1999). Camera pose and calibration from 4 or 5 known 3D points. In International conference on computer vision (pp. 278–284). Google Scholar
  30. Umeyama, S. (1991). Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vincent Lepetit
    • 1
  • Francesc Moreno-Noguer
    • 1
  • Pascal Fua
    • 1
  1. 1.Computer Vision LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations