International Journal of Computer Vision

, Volume 90, Issue 2, pp 183–197

A Basis Illumination Approach to BRDF Measurement

  • Abhijeet Ghosh
  • Wolfgang Heidrich
  • Shruthi Achutha
  • Matthew O’Toole
Article

Abstract

Realistic descriptions of surface reflectance have long been a topic of interest in both computer vision and computer graphics research. In this paper, we describe a novel high speed approach for the acquisition of bidirectional reflectance distribution functions (BRDFs). We develop a new theory for directly measuring BRDFs in a basis representation by projecting incident light as a sequence of basis functions from a spherical zone of directions. We derive an orthonormal basis over spherical zones that is ideally suited for this task. BRDF values outside the zonal directions are extrapolated by re-projecting the zonal measurements into a spherical harmonics basis, or by fitting analytical reflection models to the data. For specular materials, we experiment with alternative basis acquisition approaches such as compressive sensing with a random subset of the higher order orthonormal zonal basis functions, as well as measuring the response to basis defined by an analytical model as a way of optically fitting the BRDF to such a representation. We verify this approach with a compact optical setup that requires no moving parts and only a small number of image measurements. Using this approach, a BRDF can be measured in just a few minutes.

Keywords

Reflectance Computational illumination Object scanning and acquisition Optics Compressive sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashikhmin, M. (2006). Distribution-based BRDFs. http://jesper.kalliope.org/blog/library/dbrdfs.pdf.
  2. Ashikhmin, M., & Shirley, P. (2000). An anisotropic phong BRDF model. Journal of Graphics Tools, 5(2), 25–32. Google Scholar
  3. Ashikhmin, M., Premośe, S., & Shirley, P. (2000). A microfacet-based BRDF generator. In SIGGRAPH ’00: Proceedings of the 27th annual conference on computer graphics and interactive techniques (pp. 65–74). Google Scholar
  4. Basri, R., & Jacobs, D. W. (2003). Lambertian reflectance and linear subspaces. IEEE PAMI, 25(2), 218–233. Google Scholar
  5. Candés, E., & Romberg, J. (2005). Practical signal recovery from random projections. In Proc. of IS&T/SPIE s 17th Annual Symposium on Electronic Imaging. Google Scholar
  6. Candés, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509. CrossRefGoogle Scholar
  7. Cook, R. L., & Torrance, K. E. (1982). A reflectance model for computer graphics. ACM Transactions on Graphics, 1(1), 7–24. CrossRefGoogle Scholar
  8. Cornell (2005). CORNELL light measurement laboratory. http://www.graphics.cornell.edu/research/measure/.
  9. CUReT (1999). CUReT: Columbia-utrech reflectance and texture. http://www.cs.columbia.edu/CAVE/curet/.
  10. Dana, K. (2001). BRDF/BTF measurement device. In Proc. of ICCV ’01 (pp. 460–466). Google Scholar
  11. Debevec, P., & Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. In Proc. of ACM SIGGRAPH ’97 (pp. 369–378). Google Scholar
  12. Gardner, A., Tchou, C., Hawkins, T., & Debevec, P. (2003). Linear light source reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 749–758. CrossRefGoogle Scholar
  13. Gautron, P., Křivánek, J., Pattanaik, S., & Bouatouch, K. (2004). A novel hemispherical basis for accurate and efficient rendering. In Eurographics symposium on rendering (pp. 321–330). Google Scholar
  14. Ghosh, A., Achutha, S., Heidrich, W., & O’Toole, M. (2007). BRDF acquisition with basis illumination. In Proc. of IEEE international conference on computer vision (ICCV). Google Scholar
  15. Goesele, M., Granier, X., Heidrich, W., & Seidel, H.-P. (2003). Accurate light source acquisition and rendering. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 621–630. CrossRefGoogle Scholar
  16. Gorski, K. M. (1994). On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: method. The Astrophysical Journal, 430, L85–L88. CrossRefGoogle Scholar
  17. Han, J. Y., & Perlin, K. (2003). Measuring bidirectional texture reflectance with a kaleidoscope. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 741–748. CrossRefGoogle Scholar
  18. He, X. D., Heynen, P. O., Phillips, R. L., Torrance, K. E., Salesin, D. H., & Greenberg, D. P. (1992). A fast and accurate light reflection model. In SIGGRAPH ’92: Proceedings of the 19th annual conference on computer graphics and interactive techniques (pp. 253–254). Google Scholar
  19. He, X. D., Torrance, K. E., Sillion, F. X., & Greenberg, P. (1991). A comprehensive physical model for light reflection. In SIGGRAPH ’91: Proceedings of the 18th annual conference on computer graphics and interactive techniques (pp. 175–186). Google Scholar
  20. Koenderink, J., van Doorn, A., & Stavridi, M. (1996). Bidirectional reflection distribution function expressed in terms of surface scattering modes. ECCV ’96. 4th European Conference on Computer Vision, 2, 28–39. Google Scholar
  21. Kuthirummal, S., & Nayar, S. K. (2006). Multiview radial catadioptric imaging for scene capture. ACM Transactions on Graphics (also Proc. of ACM SIGGRAPH), 25(3), 916–923. CrossRefGoogle Scholar
  22. Lafortune, E., Foo, S.-C., Torrance, K., & Greenberg, D. (1997). Non-linear approximation of reflectance functions. In Proc. of ACM SIGGRAPH ’97 (pp. 117–126). Google Scholar
  23. Lalonde, P., & Fournier, A. (1997). A wavelet representation of reflectance functions. IEEE Transactions on Visualization and Computer Graphics, 3(4), 329–336. CrossRefGoogle Scholar
  24. Lensch, H., Kautz, J., Goesele, M., Heidrich, W., & Seidel, H.-P. (2001). Image-based reconstruction of spatially varying materials. In Eurographics Workshop on Rendering (pp. 104–115). Google Scholar
  25. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Wiess, M., & Debevec, P. (2007). Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Eurographics symposium on rendering. Google Scholar
  26. Malzbender, T., Gelb, D., & Wolters, H. (2001). Polynomial texture maps. In SIGGRAPH ’01: Proceedings of the 28th annual conference on computer graphics and interactive techniques (pp. 519–528). Google Scholar
  27. Marschner, S., Westin, S., Lafortune, E., & Torrance, K. (2000). Image-based measurement of the bidirectional reflection distribution function. Applied Optics, 39(16), 2592–2600. CrossRefGoogle Scholar
  28. Matusik, W., Pfister, H., Brand, M., & McMillan, L. (2003). A data-driven reflectance model. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 759–769. CrossRefGoogle Scholar
  29. Mukaigawa, Y., Sumino, K., & Yagi, Y. (2007). High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR) (pp. 1–8). Google Scholar
  30. Ng, R., Ramamoorthi, R., & Hanrahan, P. (2003). All-frequency shadows using non-linear wavelet lighting approximation. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 376–381. CrossRefGoogle Scholar
  31. Ngan, A., Durand, F., & Matusik, W. (2005). Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering (pp. 117–226). Google Scholar
  32. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., & Limperis, T. (1977). Geometric considerations and nomenclature for reflectance. NBS Monograph, 160. Google Scholar
  33. NIST (2003). NIST reference reflectometer: STARR facility. http://www.physics.nist.gov/Divisions/Div844/facilities/brdf/starr.html.
  34. Peers, P., & Dutré, P. (2005). Inferring reflectance functions from wavelet noise. In Proc. Eurographics symposium on rendering (pp. 173–181). Google Scholar
  35. Pharr, M., & Humphreys, G. (2004). Physically based redering. New York: Morgan Kaufmann. Google Scholar
  36. Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1992). Numerical recipes: the art of scientific computing. Cambridge: Cambridge University Press. Google Scholar
  37. Ramamoorthi, R., & Hanrahan, P. (2001). An efficient representation for irradiance environment maps. In Proc. of ACM SIGGRAPH ’01 (pp. 497–500). Google Scholar
  38. Ramamoorthi, R., & Hanrahan, P. (2002). Frequency space environment map rendering. In Proc. of ACM SIGGRAPH ’02 (pp. 517–526). Google Scholar
  39. Sato, I., Okabe, T., Sato, Y., & Ikeuchi, K. (2003). Appearance sampling for obtaining a set of basis images for variable illumination. In Proc. of ICCV’03 (pp. 800–807). Google Scholar
  40. Schröder, P., & Sweldens, W. (1995). Spherical wavelets: efficiently representing functions on the sphere. In Computer graphics 29, annual conference series (pp. 161–172). Google Scholar
  41. Ward, G. J. (1992). Measuring and modeling anisotropic reflection. In SIGGRAPH ’92: Proceedings of the 19th annual conference on computer graphics and interactive techniques (pp. 265–272). Google Scholar
  42. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., & Debevec, P. (2005). Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Transactions on Graphics (Proc. SIGGRAPH), 24(3), 756–764. CrossRefGoogle Scholar
  43. Westin, S., Arvo, J., & Torrance, K. (1992). Predicting reflectance functions from complex surfaces. In Computer graphics 26, annual conference series (pp. 255–264). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Abhijeet Ghosh
    • 1
  • Wolfgang Heidrich
    • 1
  • Shruthi Achutha
    • 1
  • Matthew O’Toole
    • 1
  1. 1.The University of British ColumbiaVancouverCanada
  2. 2.USC Institute for Creative TechnologiesMarina Del ReyUSA

Personalised recommendations