Advertisement

International Journal of Computer Vision

, Volume 81, Issue 2, pp 138–154 | Cite as

An Alternative Approach to Computing Shape Orientation with an Application to Compound Shapes

  • Joviša ŽunićEmail author
  • Paul L. Rosin
Article

Abstract

We consider the method that computes the shape orientation as the direction α that maximises the integral of the length of projections, taken to the power of 2N, of all the straight line segments whose end points belong to the shape, to a line that has the slope α. We show that for N=1 such a definition of shape orientation is consistent with the shape orientation defined by the axis of the least second moment of inertia. For N>1 this is not the case, and consequently our new method can produce different results. As an additional benefit our approach leads to a new method for computation of the orientation of compound objects.

Keywords

Shape Orientation Image processing Early vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutsen, L., & Marendaz, C. (2001). Detection of shape orientation depends on salient axes of symmetry and elongation: Evidence from visual search. Perception & Psychophysics, 63(3), 404–422. Google Scholar
  2. Chandra, D. V. S. (1998). Target orientation estimation using Fourier energy spectrum. IEEE Transactions Aerospace and Electronic Systems, 34(3), 1009–1012. CrossRefGoogle Scholar
  3. Cortadellas, J., Amat, J., & De la Torre, F. (2004). Robust normalization of silhouettes for recognition applications. Pattern Recognition Letters, 25(5), 591–601. CrossRefGoogle Scholar
  4. Fahlbusch, S., et al. (2005). Nanomanipulation in a scanning electron microscope. Journal of Materials Processing Technology, 167(2–3), 371–382. CrossRefGoogle Scholar
  5. Ha, V. H. S., & Moura, J. M. F. (2005). Affine-permutation invariance of 2-d shapes. IEEE Transactions on Image Processing, 14(11), 1687–1700. CrossRefGoogle Scholar
  6. Jafari-Khouzani, K., & Soltanian-Zadeh, H. (2005). Radon transform orientation estimation for rotation invariant texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 1004–1008. CrossRefMathSciNetGoogle Scholar
  7. Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine vision. New York: McGraw-Hill. Google Scholar
  8. Jiang, X.Y., & Bunke, H. (1991). Simple and fast computation of moments. Pattern Recognition, 24(8), 801–806. CrossRefGoogle Scholar
  9. Kim, S., & Kweon, I. S. (2008). Scalable representation for 3D object recognition using feature sharing and view clustering. Pattern Recognition, 41(2), 754–773. zbMATHCrossRefGoogle Scholar
  10. Kim, W. Y., & Kim, Y. S. (1999). Robust rotation angle estimator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 768–773. CrossRefGoogle Scholar
  11. Klette, R., & Rosenfeld, A. (2004). Digital geometry. San Mateo: Morgan Kaufmann. zbMATHGoogle Scholar
  12. Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1265–1278. CrossRefGoogle Scholar
  13. Lin, J.-C. (1993). Universal principal axes: An easy-to-construct tool useful in defining shape orientations for almost every kind of shape. Pattern Recognition, 26(4), 485–493. CrossRefGoogle Scholar
  14. Lin, J.-C. (1996). The family of universal axes. Pattern Recognition, 29(3), 477–485. CrossRefGoogle Scholar
  15. Mardia, K. V., & Jupp, P. E. (1999). Directional statistics. New York: Wiley. Google Scholar
  16. Marendaz, C., Stivalet, P., Barraclough, L., & Walkowiac, P. (1993). Effect of gravitational cues on visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 19, 1266–1277. CrossRefGoogle Scholar
  17. Martinez-Alajarin, J., Luis-Delgado, J. D., & Tomás-Balibrea, L.-M. (2005). Automatic system for quality-based classification of marble textures. IEEE Transactions on Systems, Man and Cybernetics, Part C, 35(4), 488–497. CrossRefGoogle Scholar
  18. Palmer, S. E. (1980). What makes triangles point: Local and global effects in configurations of ambiguous triangles. Cognitive Psychology, 12, 285–305. CrossRefMathSciNetGoogle Scholar
  19. Palmer, S. E. (1999). Vision science-photons to phenomenology. Cambridge: MIT Press. Google Scholar
  20. Rock, I., Schreiber, C., & Ro, T. (1994). The dependence of two-dimensional shape perception on orientation. Perception, 23, 1409–1426. CrossRefGoogle Scholar
  21. Shen, D., & Ip, H. H. S. (1996). Optimal axes for defining the orientations of shapes. Electronic Letters, 32(20), 1873–1874. CrossRefGoogle Scholar
  22. Shi, B., Murakami, Y., & Wu, Z. (1998). Orientation of aggregates of fine-grained soil: quantification and application. Engineering Geology, 50, 5970. CrossRefGoogle Scholar
  23. Tsai, W. H. (1985). Moment-preserving thresholding. Computer Vision, Graphics and Image Processing, 29, 377–393. CrossRefGoogle Scholar
  24. Tsai, W. H., & Chou, S. L. (1991). Detection of generalized principal axes in rotationally symetric shapes. Pattern Recognition, 24(1), 95–104. CrossRefMathSciNetGoogle Scholar
  25. Wang, L., Tan, T. N., Hu, W. M., & Ning, H. Z. (2003). Automatic gait recognition based on statistical shape analysis. IEEE Transactions on Image Processing, 12(9), 1120–1131. CrossRefMathSciNetGoogle Scholar
  26. Wei, L., Keogh, E., & Xi, X. (2006). SAXually explicit images: Finding unusual shapes. In Int. conf. on data mining, pp. 711–720. Google Scholar
  27. Žunić, J., Kopanja, L., & Fieldsend, J. E. (2006). Notes on shape orientation where the standard method does not work. Pattern Recognition, 39(5), 856–865. zbMATHCrossRefGoogle Scholar
  28. Žunić, J., Rosin, P. L., & Kopanja, L. (2006). On the orientability of shapes. IEEE Transactions on Image Processing, 15(11), 3478–3487. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ExeterExeterUK
  2. 2.Mathematical InstituteSerbian Academy of Arts and SciencesBelgradeSerbia
  3. 3.School of Computer ScienceCardiff UniversityCardiffUK

Personalised recommendations