International Journal of Computer Vision

, Volume 80, Issue 3, pp 358–374

Translated Poisson Mixture Model for Stratification Learning



A framework for the regularized and robust estimation of non-uniform dimensionality and density in high dimensional noisy data is introduced in this work. This leads to learning stratifications, that is, mixture of manifolds representing different characteristics and complexities in the data set. The basic idea relies on modeling the high dimensional sample points as a process of translated Poisson mixtures, with regularizing restrictions, leading to a model which includes the presence of noise. The translated Poisson distribution is useful to model a noisy counting process, and it is derived from the noise-induced translation of a regular Poisson distribution. By maximizing the log-likelihood of the process counting the points falling into a local ball, we estimate the local dimension and density. We show that the sequence of all possible local countings in a point cloud formed by samples of a stratification can be modeled by a mixture of different translated Poisson distributions, thus allowing the presence of mixed dimensionality and densities in the same data set. With this statistical model, the parameters which best describe the data, estimated via expectation maximization, divide the points in different classes according to both dimensionality and density, together with an estimation of these quantities for each class. Theoretical asymptotic results for the model are presented as well. The presentation of the theoretical framework is complemented with artificial and real examples showing the importance of regularized stratification learning in high dimensional data analysis in general and computer vision and image analysis in particular.


Manifold learning Stratification learning Clustering Dimension estimation Density estimation Translated Poisson Mixture models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambroise, C., & Govaert, G. (1996). Clustering of spatial data by the EM algorithm. In geoENV I—Geostatistics for environmental applications. Google Scholar
  2. Ambroise, C., & Govaert, G. (1998). Convergence of an EM-type algorithm for spatial clustering. Pattern Recognition Letters, 19(10), 919–927. CrossRefGoogle Scholar
  3. Barbara, D., & Chen, P. (2000). Using the fractal dimension to cluster datasets. In Proceedings of the sixth ACM SIGKDD (pp. 260–264). Google Scholar
  4. Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in NIPS (Vol. 14). Vancouver, Canada. Google Scholar
  5. Bendich, P., Cohen-Steiner, D., Harer, J., Edelsbrunner, H., & Morozov, D. (2007). Inferring local homology from sampled stratified spaces. In 48th annual IEEE symposium on foundations of computer science (pp. 536–546). Google Scholar
  6. Brand, M. (2002). Charting a manifold. In Advances in NIPS (Vol. 16). Vancouver, Canada. Google Scholar
  7. Cao, W., & Haralick, R. (2006). Nonlinear manifold clustering by dimensionality. In Proceedings of the 18th international conference on pattern recognition (Vol. 1, pp. 920–924). Google Scholar
  8. Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 21, 5–30. Special issue on Diffusion Maps and Wavelets. MATHCrossRefMathSciNetGoogle Scholar
  9. Costa, J. A., & Hero, A. O. (2004). Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Transactions on Signal Processing, 52(8), 2210–2221. CrossRefMathSciNetGoogle Scholar
  10. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data. Journal of the Royal Statistical Society Ser. B, 39, 1–38. MATHMathSciNetGoogle Scholar
  11. Dey, T. K., Giesen, J., Goswami, S., & Zhao, W. (2003). Shape dimension and approximation from samples. Discrete and Computational Geometry, 29, 419–434. MATHCrossRefMathSciNetGoogle Scholar
  12. Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete Computational Geometry, 28, 511–533. MATHCrossRefMathSciNetGoogle Scholar
  13. Gionis, A., Hinneburg, A., Papadimitriu, S., & Tsparas, P. (2005). Dimension induced clustering. In Proceeding of the Eleventh ACM SIGKDD (pp. 51–60). Google Scholar
  14. Goh, A., & Vidal, R. (2007). Segmenting motions of different types by unsupervised manifold clustering. In Proceedings of CVPR. Google Scholar
  15. Haro, G., Randall, G., & Sapiro, G. (2006). Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds. In Advances in NIPS (Vol. 19). Vancouver, Canada. Google Scholar
  16. Haro, G., Randall, G., & Sapiro, G. (2007). Regularized mixed dimensionality and density learning in computer vision. In Proceedings of 1st workshop on component analysis methods for classification, clustering, modeling and estimation problems in computer vision, in conjunction with CVPR, Minneapolis, June 2007. Google Scholar
  17. Hathaway, R. (1986). Another interpretation of the EM algorithm for mixture distributions. Statistics and Probability Letters, 4(2), 53–56. MATHCrossRefMathSciNetGoogle Scholar
  18. Huang, K., Ma, Y., & Vidal, R. (2004). Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications. In Proceedings of CVPR (pp. 631–638). Google Scholar
  19. Kanatani, K., & Sugaya, Y. (2003). Multi-stage optimization for multi-body motion segmentation. In Proceedings of the Australia-Japan advanced workshop on computer vision (pp. 25–31), September 2003. Google Scholar
  20. Kegl, B. (2002). Intrinsic dimension estimation using packing numbers. In Advances in NIPS (Vol. 14). Vancouver, Canada. Google Scholar
  21. Kung, S. Y., Mak, M. W., & Lin, S. H. (2004). Biometric authentication: a machine learning approach. New York: Prentice Hall. Google Scholar
  22. Lafon, S., Keller, Y., & Coifman, R. R. (2006). Data fusion and multi-cue data matching by diffusion maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1784–1797. CrossRefGoogle Scholar
  23. Levina, E., & Bickel, P. J. (2005). Maximum likelihood estimation of intrinsic dimension. In Advances in NIPS (Vol. 17). Vancouver, Canada. Google Scholar
  24. Lu, L., & Vidal, R. (2006). Combined central and subspace clustering for computer vision applications. In Proceedings of the 23rd international conference on machine learning (Vol. 148, pp. 593–600). Google Scholar
  25. Ma, Y., Derksen, H., Hong, W., & Wright, J. (2007). Segmentation of multivariate mixed data via lossy coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1546–1562. CrossRefGoogle Scholar
  26. Mordohai, P., & Medioni, G. (2005). Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting. In IJCAI (p. 798). Google Scholar
  27. Polito, M., & Perona, P. (2002). Grouping and dimensionality reduction by locally linear embedding. In Advances in NIPS (Vol. 14). Vancouver, Canada. Google Scholar
  28. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326. CrossRefGoogle Scholar
  29. Snyder, D. L. (1975). Random point processes. New York: Wiley. MATHGoogle Scholar
  30. Snyder, D. L., & Miller, M. I. (1991). Random point processes in time and space. Berlin: Springer. MATHGoogle Scholar
  31. Souvenir, R., & Pless, R. (2005). Manifold clustering. In ICCV (pp. 648–653). Google Scholar
  32. Takens, F. (1985). On the numerical determination of the dimension of an attractor. Lecture notes in mathematics: Vol. 1125. Dynamical systems and bifurcations (pp. 99–106). Google Scholar
  33. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. CrossRefGoogle Scholar
  34. Tishby, N., Pereira, F., & Bialek, W. (1999). The information bottleneck method. In Proceedings of the 37-th annual allerton conference on communication, control and computing (pp. 368–377). Google Scholar
  35. Vidal, R., Ma, Y., & Piazzi, J. (2003). Generalized principal component analysis (GPCA). In Proceedings of CVPR (pp. 621–628). Google Scholar
  36. Vidal, R., Ma, Y., & Sastry, S. (2004). Generalized principal component analysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12). Google Scholar
  37. Yang, A. Y., Rao, S. R., & Ma, Y. (2006). Robust statistical estimation and segmentation of multiple subspaces. In CVPR workshop on 25 years of RANSAC. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gloria Haro
    • 1
  • Gregory Randall
    • 2
  • Guillermo Sapiro
    • 3
  1. 1.Dept. Teoria del Senyal i ComunicacionsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Instituto de Ingeniería EléctricaUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Dept. of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations