Large Deformation Diffeomorphic Metric Curve Mapping

  • Joan Glaunès
  • Anqi Qiu
  • Michael I. Miller
  • Laurent Younes
Article

Abstract

We present a matching criterion for curves and integrate it into the large deformation diffeomorphic metric mapping (LDDMM) scheme for computing an optimal transformation between two curves embedded in Euclidean space ℝd. Curves are first represented as vector-valued measures, which incorporate both location and the first order geometric structure of the curves. Then, a Hilbert space structure is imposed on the measures to build the norm for quantifying the closeness between two curves. We describe a discretized version of this, in which discrete sequences of points along the curve are represented by vector-valued functionals. This gives a convenient and practical way to define a matching functional for curves. We derive and implement the curve matching in the large deformation framework and demonstrate mapping results of curves in ℝ2 and ℝ3. Behaviors of the curve mapping are discussed using 2D curves. The applications to shape classification is shown and experiments with 3D curves extracted from brain cortical surfaces are presented.

Keywords

Large deformation Diffeomorphisms Vector-valued measure Curve matching 

References

  1. Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shooting and diffeomorphic matching via textured meshes. In EMMCVPR (pp. 365–381). Google Scholar
  2. Avants, B., & Gee, J. C. (2004). Geodesic estimation for large deformation anatomical shape and intensity averaging. NeuroImage, 23, 139–150. CrossRefGoogle Scholar
  3. Bakircioglu, M., Grenander, U., Khaneja, N., & Miller, M. I. (1998). Curve matching on brain surfaces using frenet distances. Human Brain Mapping, 6(5–6), 329–333. CrossRefGoogle Scholar
  4. Bakircioglu, M., Joshi, S., & Miller, M. (1999). Landmark matching on brain surfaces via large deformation diffeomorphisms on the sphere. In Image processing : Vol. 3661. Proc. SPIE medical imaging 1999 (pp. 710–715). SPIE: Bellingham. Google Scholar
  5. Beg, M. F. (2003). Variational and computational methods for flows of diffeomorphisms in image matching and growth in computational anatomy. Ph.D. dissertation, Johns Hopkins University. Google Scholar
  6. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157. CrossRefGoogle Scholar
  7. Besl, P., & McKay, N. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. CrossRefGoogle Scholar
  8. Camion, V., & Younes, L. (2001). Geodesic interpolating splines. In M. Figueiredo, J. Zerubia, & K. Jain (Eds.), Lecture notes in computer sciences : Vol. 2134. EMMCVPR 2001. Berlin: Springer. Google Scholar
  9. Cao, Y., Miller, M., Winslow, R., & Younes, L. (2005a). Large deformation diffeomorphic metric mapping of vector fields. IEEE Transactions on Medical Imaging, 24, 1216–1230. CrossRefGoogle Scholar
  10. Cao, Y., Miller, M. I., Winslow, R. L., & Younes, L. (2005b). Large deformation diffeomorphic metric mapping of fiber orientations. In ICCV (pp. 1379–1386). Los Alamitos: IEEE Comput. Soc. Google Scholar
  11. Cox, M. F., & Cox, M. A. A. (2001). Multidimensional scaling. Boca Raton: Chapman and Hall. MATHGoogle Scholar
  12. Dupuis, P., Grenander, U., & Miller, M. I. (1998). Variational problems on flows of diffeomorphisms for image matching. Quaterly of Applied Mathematics, 56, 587–600. MATHMathSciNetGoogle Scholar
  13. Durrleman, S., Pennec, X., Trouve, A., & Ayache, N. (2007). Measuring brain variability via sulcal lines registration: a diffeomorphic approach. In Int. conf. med. image comput. comput. assist. interv. (pp. 675–682). Google Scholar
  14. Feldmar, J., & Ayache, N. (1996). Rigid, affine and locally affine registration of free-form surfaces. International Journal of Computer Vision, 18(2), 99–119. CrossRefGoogle Scholar
  15. Fillard, P., Arsigny, V., Pennec, X., Hayashi, K., Thompson, P., & Ayache, N. (2007). Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines. Neuroimage, 34, 639–650. CrossRefGoogle Scholar
  16. Gee, J. C., & Bajcsy, R. K. (1999). Elastic matching: Continuum mechanical and probabilistic analysis. In A. W. Toga (Ed.), Brain warping (pp. 183–196). San Diego: Academic Press. CrossRefGoogle Scholar
  17. Glaunès, J. (2005). Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes etl l’anatomie numérique. Ph.D. dissertation, Université Paris 13. Google Scholar
  18. Glaunès, J., Trouvé, A., & Younes, L. (2004). Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching. In CVPR (pp. 712–718). Los Alamitos: IEEE Comput. Soc. Google Scholar
  19. Glaunès, J., Trouvé, A., & Younes, L. (2006). Modeling planar shape variation via hamiltonian flows of curves. In H. Krim & A. Yezzi (Eds.), Statistics and analysis of shapes. Boston: Birkhauser. Google Scholar
  20. Grenander, U., & Miller, M. I. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 56(4), 617–694. MATHMathSciNetGoogle Scholar
  21. Han, X., Xu, C., & Prince, J. L. (2001). A topology preserving deformable model using level set. In CVPR’2001 (Kauai, HI) (Vol. 2, pp. 765–770). Los Alamitos: IEEE Comput. Soc. Google Scholar
  22. Han, X., Xu, C., Braga-Neto, U., & Prince, J. (2002). Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Transactions on Medical Imaging, 21, 109–121. CrossRefGoogle Scholar
  23. Helm, P. A., Younes, L., Beg, M. F., Ennis, D. B., Leclercq, C., Faris, O. P., McVeigh, E., Kass, D., Miller, M. I., & Winslow, R. L. (2006). Evidence of structural remodeling in the dyssynchronous failing heart. Circulation Research, 98, 125–132. CrossRefGoogle Scholar
  24. Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370. MATHCrossRefMathSciNetGoogle Scholar
  25. Joshi, M., Cui, J., Doolittle, K., Joshi, S., Van Essen, D., Wang, L., & Miller, M. I. (1999). Brain segmentation and the generation of cortical surfaces. NeuroImage, 9, 461–476. CrossRefGoogle Scholar
  26. Joshi, S. C., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, 151–160. CrossRefGoogle Scholar
  27. Joshi, A. A., Shattuck, D. W., Thompson, P. M., & Leahy, R. M. (2007). Registration of cortical surfaces using sulcal landmarks for group analysis of meg data. In International congress series: Vol. 1300. New frontiers in biomagnetism. Proceedings of the 15th international conference on biomagnetism (pp. 229–232), Vancouver, BC, Canada, 21–25 August 2006. Google Scholar
  28. Klassen, E., Srivastava, A., Mio, W., & Joshi, S. H. (2003). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), 372–383. CrossRefGoogle Scholar
  29. Leow, A., Thompson, P. M., Protas, H., & Huang, S.-C. (2004). Brain warping with implicit representations. In ISBI (pp. 603–606). Los Alamitos: IEEE Comput. Soc. Google Scholar
  30. McLachlan, R. I., & Marsland, S. (2007). N-particle dynamics of the Euler equations for planar diffeomorphisms. Dynamical Systems, 22(3), 269–290. CrossRefMathSciNetMATHGoogle Scholar
  31. Michor, P. W., & Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied Computational Harmonic Analysis, 23(1), 74–113. MATHCrossRefMathSciNetGoogle Scholar
  32. Miller, M. I., Massie, A. B., Ratnanather, J. T., Botteron, K. N., & Csernansky, J. G. (2000). Bayesian construction of geometrically based cortical thickness metrics. NeuroImage, 12, 676–687. CrossRefGoogle Scholar
  33. Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405. CrossRefGoogle Scholar
  34. Mio, W., & Srivastava, A. (2004). Elastic-string models for representation and analysis of planar shapes. In CVPR (2) (pp. 10–15). Google Scholar
  35. Qiu, A., Younes, L., Wang, L., Ratnanather, J. T., Gillepsie, S. K., Kaplan, G., Csernansky, J. G., & Miller, M. I. (2007). Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage, 37, 821–833. CrossRefGoogle Scholar
  36. Ratnanather, J. T., Barta, P. E., Honeycutt, N. A., Lee, N., Morris, N. G., Dziorny, A. C., Hurdal, M. K., Pearlson, G. D., & Miller, M. I. (2003). Dynamic programming generation of boundaries of local coordinatized submanifolds in the neocortex: application to the planum temporale. NeuroImage, 20(1), 359–377. CrossRefGoogle Scholar
  37. Rettmann, M. E., Han, X., Xu, C., & Prince, J. L. (2002). Automated sulcal segmentation using watersheds on the cortical surface. NeuroImage, 15(2), 329–344. CrossRefGoogle Scholar
  38. Schmidt, F. R., Clausen, M., & Cremers, D. (2006). Shape matching by variational computation of geodesics on a manifold. In K. Franke, K.-R. Müller, & B. Nickolay (Eds.), Lecture notes in computer science : Vol. 4174. DAGM-symposium (pp. 142–151). Berlin: Springer. Google Scholar
  39. Sharon, E., & Mumford, D. (2006). 2d-shape analysis using conformal mapping. International Journal of Computer Vision, 70(1), 55–75. CrossRefGoogle Scholar
  40. Thompson, P., & Toga, A. (1996). A surface-based technique for warping three-dimensional image of the brain. IEEE Transactions on Medical Imaging, 15(4), 402–417. CrossRefGoogle Scholar
  41. Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., & Toga, A. W. (1996). Three–dimensional statistical analysis of sulcal variability in the human brain. Journal of Neuroscience, 16(13), 4261–4274. Google Scholar
  42. Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., de Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., Doddrell, D. M., Wang, Y., van Erp, T. G., Cannon, T. D., & Toga, A. W. (2004). Mapping cortical change in alzheimer’s disease, brain development, and schizophrenia. NeuroImage, 23, S2–S18. CrossRefGoogle Scholar
  43. Trouvé, A. (1995). An infinite dimensional group approach for physics based models (Technical report). Electronically available at http://www.cis.jhu.edu.
  44. Twining, C., Marsland, S., & Taylor, C. (2002). Measuring geodesic distances on the space of bounded diffeomorphisms. In Proceedings of the British machine vision conference (BMVC), Cardiff, September 2002 (Vol. 2, pp. 847–856). Google Scholar
  45. Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Inform. proc. in med. imaging : Vol. 3565. Lecture notes in comput. sci. (pp. 381–392). Berlin: Springer. Google Scholar
  46. Welker, W. (1990). Why does cerebral cortex fissure and fold? Cerebral Cortex, 83, 3–136. Google Scholar
  47. Yang, C., Duraiswami, R., Gumerov, N., & Davis, L. (2003). Improved fast gauss transform and efficient kernel density estimation. In IEEE international conference on computer vision (pp. 464–471). Google Scholar
  48. Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal on Applied Mathematics, 58, 565–586. MATHCrossRefMathSciNetGoogle Scholar
  49. Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2), 119–152. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joan Glaunès
    • 1
  • Anqi Qiu
    • 2
  • Michael I. Miller
    • 3
  • Laurent Younes
    • 4
  1. 1.MAP5, CNRS UMR 8145Université Paris DescartesParisFrance
  2. 2.Division of BioengineeringNational University of SingaporeSingaporeSingapore
  3. 3.Center for Imaging ScienceJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Applied Mathematics and StatisticsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations