International Journal of Computer Vision

, Volume 79, Issue 2, pp 107–117 | Cite as

Active Contours Under Topology Control—Genus Preserving Level Sets



We present a novel framework to exert topology control over a level set evolution. Level set methods offer several advantages over parametric active contours, in particular automated topological changes. In some applications, where some a priori knowledge of the target topology is available, topological changes may not be desirable. This is typically the case in biomedical image segmentation, where the topology of the target shape is prescribed by anatomical knowledge. However, topologically constrained evolutions often generate topological barriers that lead to large geometric inconsistencies. We introduce a topologically controlled level set framework that greatly alleviates this problem. Unlike existing work, our method allows connected components to merge, split or vanish under some specific conditions that ensure that the genus of the initial active contour (i.e. its number of handles) is preserved. We demonstrate the strength of our method on a wide range of numerical experiments and illustrate its performance on the segmentation of cortical surfaces and blood vessels.


Geometric deformable model Genus preservation Topology control Topological constraint Level set method Digital topology Active contours Simple points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11263_2007_102_MOESM1_ESM.mpeg (1.2 mb)
Video Object
11263_2007_102_MOESM2_ESM.mpeg (2.3 mb)
Video Object
11263_2007_102_MOESM3_ESM.mpeg (5 mb)
Video Object
11263_2007_102_MOESM4_ESM.mpeg (4.8 mb)
Video Object


  1. Adalsteinsson, D., & Sethian, J. A. (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118(2), 269–277. MATHCrossRefMathSciNetGoogle Scholar
  2. Bardinet, E., Cohen, L. D., & Ayache, N. (1998). A parametric deformable model to fit unstructured 3D data. Computer Vision and Image Understanding, 71(1), 39–54. CrossRefGoogle Scholar
  3. Bertrand, G. (1994). Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters, 15(10), 1003–1011. CrossRefMathSciNetGoogle Scholar
  4. Bertrand, G. (1996). A boolean characterization of three-dimensional simple points. Pattern Recognition Letters, 17, 115–124. CrossRefGoogle Scholar
  5. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. The International Journal of Computer Vision, 22(1), 61–79. MATHCrossRefGoogle Scholar
  6. Dale, A. D., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis, I: segmentation and surface reconstruction. NeuroImage, 9, 179–194. CrossRefGoogle Scholar
  7. Davatzikos, C., & Bryan, R. N. (1996). Using a deformable surface model to obtain a shape representation of the cortex. IEEE Transactions on Medical Imaging, 15, 758–795. Google Scholar
  8. DoCarmo, M. P. (1976). Differential geometry of curves and surfaces. New York: Prentice-Hall. Google Scholar
  9. Duan, Y., Yang, L., Qin, H., & Samaras, D. (2004). Shape reconstruction from 3D and 2D data using PDE-based deformable surfaces. In European conference on computer vision (Vol. 3, pp. 238–251). Google Scholar
  10. Faugeras, O., & Keriven, R. (1998). Variational principles, surface evolution, PDE’s, level set methods and the stereo problem. IEEE Transactions on Image Processing, 7(3), 336–344. MATHCrossRefMathSciNetGoogle Scholar
  11. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20, 70–80. CrossRefGoogle Scholar
  12. Fua, P., & Leclerc, Y. G. (1995). Object-centered surface reconstruction: Combining multi-image stereo and shading. The International Journal of Computer Vision, 16(1), 35–56. CrossRefGoogle Scholar
  13. Goldenberg, R., Kimmel, R., Rivlin, E., & Rudzsky, M. (2002). Cortex segmentation: a fast variational geometric approach. IEEE Transactions on Medical Imaging, 21(2), 1544–1551. CrossRefGoogle Scholar
  14. Goldlücke, B., & Magnor, M. (2004). Space-time isosurface evolution for temporally coherent 3D reconstruction. In International conference on computer vision and pattern recognition (Vol. 1, pp. 350–355). Google Scholar
  15. Guskov, I., & Wood, Z. (2001). Topological noise removal. In Graphics proceedings (Vol. I, pp. 19–26). Google Scholar
  16. Han, X., Xu, C., Braga-Neto, U., & Prince, J. L. (2002). Topology correction in brain cortex segmentation using a multiscale, graph-based approach. IEEE Transactions on Medical Imaging, 21(2), 109–121. CrossRefGoogle Scholar
  17. Han, X., Xu, C., & Prince, J. L. (2003). A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 755–768. CrossRefGoogle Scholar
  18. Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press. MATHGoogle Scholar
  19. Jin, H., Soatto, S., & Yezzi, A. J. (2003). Multi-view stereo beyond Lambert. In International conference on computer vision and pattern recognition (Vol. 1, pp. 171–178). Google Scholar
  20. Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour models. The International Journal of Computer Vision, 1(4), 321–331. CrossRefGoogle Scholar
  21. Kriegeskorte, N., & Goeble, R. (2001). An efficient algorithm for topologically segmentation of the cortical sheet in anatomical mr volumes. NeuroImage, 14, 329–346. CrossRefGoogle Scholar
  22. Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: a high-resolution 3D surface reconstruction algorithm. ACM Computer Graphics, 21(4), 163–170. CrossRefGoogle Scholar
  23. MacDonald, D., Kabani, N., Avis, D., & Evens, A. C. (2000). Automated 3D extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage, 12, 340–356. CrossRefGoogle Scholar
  24. Mangin, J.-F., Frouin, V., Bloch, I., Regis, J., & Lopez-Krahe, J. (1995). From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5, 297–318. CrossRefGoogle Scholar
  25. Metaxas, D. N., & Terzopoulos, D. (1993). Shape and nonrigid motion estimation through physics-based synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6), 580–591. CrossRefGoogle Scholar
  26. Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1), 12–49. MATHCrossRefMathSciNetGoogle Scholar
  27. Paragios, N., & Deriche, R. (2005). Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 97(3), 259–282. CrossRefGoogle Scholar
  28. Pons, J.-P. (2005). Methodological and applied contributions to the deformable models framework. PhD dissertation, Ecole Nationale des Ponts et Chaussées, 18 November 2005. Google Scholar
  29. Pons, J.-P., Keriven, R., & Faugeras, O. (2007). Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. The International Journal of Computer Vision, 72(2), 179–193. CrossRefGoogle Scholar
  30. Ségonne, F. (2005). Segmentation of medical images under topological constraints. PhD dissertation, Massachusetts Institute of Technology, December 12 2005. Google Scholar
  31. Ségonne, F., Pons, J.-P., Grimson, E., & Fischl, B. (2005). A novel level set framework for the segmentation of medical images under topology control. In Workshop on computer vision for biomedical image applications: current techniques and future trends (pp. 135–145). Google Scholar
  32. Ségonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically-accurate topology simplification of triangulated cortical surfaces using non-separating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529. CrossRefGoogle Scholar
  33. Shattuck, D. W., & Leahy, R. M. (2001). Automated graph based analysis and correction of cortical volume topology. IEEE Transactions on Medical Imaging, 20(11), 1167–1177. CrossRefGoogle Scholar
  34. Taubin, G., Cukierman, F., Sullivan, S., Ponce, J., & Kriegman, D. J. (1994). Parameterized families of polynomials for bounded algebraic curve and surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(3), 287–303. MATHCrossRefGoogle Scholar
  35. Xu, C., Pham, D. L., Rettmann, M. E., Yu, D. N., & Prince, J. L. (1999). Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Transactions on Medical Imaging, 18, 467–480. CrossRefGoogle Scholar
  36. Yezzi, A. J., & Soatto, S. (2003). Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images. The International Journal of Computer Vision, 53(2), 153–167. CrossRefGoogle Scholar
  37. Zhao, H., Osher, S., Merriman, B., & Kang, M. (2000). Implicit and non-parametric shape reconstruction from unorganized points using a variational level set method. Computer Vision and Image Understanding, 80(3), 295–314. MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Willow, Certis LaboratoryENS/INRIA/ENPCParisFrance

Personalised recommendations