International Journal of Computer Vision

, Volume 77, Issue 1–3, pp 157–173

LabelMe: A Database and Web-Based Tool for Image Annotation

  • Bryan C. Russell
  • Antonio Torralba
  • Kevin P. Murphy
  • William T. Freeman
Article

DOI: 10.1007/s11263-007-0090-8

Cite this article as:
Russell, B.C., Torralba, A., Murphy, K.P. et al. Int J Comput Vis (2008) 77: 157. doi:10.1007/s11263-007-0090-8

Abstract

We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.

Keywords

Database Annotation tool Object recognition Object detection 

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bryan C. Russell
    • 1
  • Antonio Torralba
    • 1
  • Kevin P. Murphy
    • 2
  • William T. Freeman
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departments of computer science and statisticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations