International Journal of Computer Vision

, Volume 76, Issue 2, pp 153–163 | Cite as

FLIRT with Rigidity—Image Registration with a Local Non-rigidity Penalty

  • Jan ModersitzkiEmail author
Position Paper


Registration is a technique nowadays commonly used in medical imaging. A drawback of most of the current registration schemes is that all tissue is being considered as non-rigid (Staring et al., Proceedings of the SPIE 2006, vol. 6144, pp. 1–10, 2006). Therefore, rigid objects in an image, such as bony structures or surgical instruments, may be transformed non-rigidly. In this paper, we integrate the concept of local rigidity to the FLexible Image Registration Toolbox (FLIRT) (Haber and Modersitzki, in SIAM J. Sci. Comput. 27(5):1594–1607, 2006; Modersitzki, Numerical Methods for Image Registration, 2004). The idea is to add a penalty for local non-rigidity to the cost function and thus to penalize non-rigid transformations of rigid objects. As our examples show, the new approach allows the maintenance of local rigidity in the desired fashion. For example, the new scheme can keep bony structures rigid during registration.

We show, how the concept of local rigidity can be integrated in the FLIRT approach and present the variational backbone, a proper discretization, and a multilevel optimization scheme. We compare the FLIRT approach to the B-spline approach. As expected from the more general setting of the FLIRT approach, our examples demonstrate that the FLIRT results are superior: much smoother, smaller deformations, visually much more pleasing.


Image processing Image registration Warping Fusion Rigidity constraints Variational techniques Constrained optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amit, Y. (1994). A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing, 15(1), 207–224. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Brewer, J. W. (1978). Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems, 25, 772–780. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Collignon, A., Vandermeulen, A., Suetens, P., & Marchal, G. (1995). 3d multi-modality medical image registration based on information theory. In Computational Imaging and Vision (Vol. 3, pp. 263–274). Google Scholar
  4. Droske, M., & Rumpf, M. (2004). A variational approach to non-rigid morphological registration. SIAM Journal on Applied Mathematics, 64(2), 668–687. zbMATHCrossRefMathSciNetGoogle Scholar
  5. Fischer, B., & Modersitzki, J. (2003a). Combination of automatic non-rigid and landmark based registration: the best of both worlds. In M. Sonka & J. M. Fitzpatrick (Eds.), Proceedings of the SPIE: Vol. 5032. Medical imaging 2003: Image processing (pp. 1037–1048). Google Scholar
  6. Fischer, B., & Modersitzki, J. (2003b). Combining landmark and intensity driven registrations. PAMM, 3, 32–35. CrossRefGoogle Scholar
  7. Fischer, B., & Modersitzki, J. (2003c). FLIRT: a flexible image registration toolbox. In J. C. Gee, J. B. A. Maintz, & M. W. Vannier (Eds.), Lecture notes in computer science : Vol. 2717. 2nd international workshop on biomedical image registration 2003 (pp. 261–270). Berlin: Springer. Google Scholar
  8. Fitzpatrick, J. M., Hill, D. L. G., & Maurer Jr., C. R. (2000). Image registration. In M. Sonka, & J. M. Fitzpatrick (Eds.), Handbook of medical imaging: Vol. 2. Medical image processing and analysis (pp. 447–513). Bellingham: SPIE. Google Scholar
  9. Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. London: Academic Press. zbMATHGoogle Scholar
  10. Glasbey, C. (1998). A review of image warping methods. Journal of Applied Statistics, 25, 155–171. zbMATHCrossRefGoogle Scholar
  11. Gurtin, M. E. (1981). An introduction to continuum mechanics. Orlando: Academic Press. zbMATHGoogle Scholar
  12. Haber, E., & Modersitzki, J. (2004). Numerical methods for volume preserving image registration. Inverse Problems, 20(5), 1621–1638. zbMATHCrossRefMathSciNetGoogle Scholar
  13. Haber, E., & Modersitzki, J. (2005). Beyond mutual information: A simple and robust alternative. In H. P. Meinzer, H. Handels, A. Horsch, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2005 (pp. 350–354). Berlin: Springer. CrossRefGoogle Scholar
  14. Haber, E., & Modersitzki, J. (2006a). A multilevel method for image registration. SIAM Journal on Scientific Computing, 27(5), 1594–1607. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Haber, E., & Modersitzki, J. (2006b). Image registration with a guaranteed displacement regularity. International Journal of Computer Vision, 1 DOI:  10.1007/s11263-006-8984-4
  16. Hajnal, J., Hawkes, D., & Hill, D. (2001). Medical image registration. Boca Raton: CRC Press. Google Scholar
  17. Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging, 21(5), 450–461. CrossRefGoogle Scholar
  18. Kabus, S., Franz, A., & Fischer, B. (2006). Variational image registration with local properties. In F. A. Gerritsen, J. P. W. Pluim, & B. Likar (Eds.), Lecture notes in computer science. Third international workshop, WBIR 2006: Biomedical image registration (pp. 92–100). Berlin: Springer. CrossRefGoogle Scholar
  19. Keeling, S. L., & Ring, W. (2005). Medical image registration and interpolation by optical flow with maximal rigidity. Journal of Mathematical Imaging and Vision, 23(1), 47–65. CrossRefMathSciNetGoogle Scholar
  20. Little, J. A., Hill, D. L. G., & Hawkes, D. J. (1997). Deformations incorporating rigid structures. Computer Vision and Image Understanding, 66(2), 223–232. CrossRefGoogle Scholar
  21. Loeckx, D., Maes, F., Vandermeulen, D., & Suetens, P. (2004). Nonrigid image registration using free-form deformations with a local rigidity constraint. In Lecture notes in computer science: Vol. 3216. MICCAI (pp. 639–646). Google Scholar
  22. Maintz, J. B. A., & Viergever, M. A. (1998). A survey of medical image registration. Medical Image Analysis, 2(1), 1–36. CrossRefGoogle Scholar
  23. MathWorks (1992). Matlab user’s guide. Natick. Google Scholar
  24. Modersitzki, J. (2004). Numerical methods for image registration. Oxford: Oxford University Press. zbMATHGoogle Scholar
  25. Modersitzki, J. (2007). Image registration with local rigidity constraints. In H. Handels, H. P. Meinzer, A. Horsch, T. M. Deserno, & T. Tolxdoff (Eds.), Informatik Aktuell: Bildverarbeitung für die Medizin (pp. 444–448). Berlin: Springer. Google Scholar
  26. Peckar, W., Schnörr, C., Rohr, K., & Stiehl, H. S. (1999). Parameter-free elastic deformation approach for 2d and 3d registration using prescribed displacements. Journal Mathematical Imaging and Vision, 10(2), 143–162. zbMATHCrossRefGoogle Scholar
  27. Pluim, J. P. W., Maintz, J. B. A., & Viergever, M. A. (2000). Image registration by maximization of combined mutual information and gradient information. IEEE TMI, 19(8), 809–814. Google Scholar
  28. Rohlfing, T., Maurer Jr., C. R., Bluemke, D. A., & Jacobs, M. A. (2003). Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging, 22(6), 730–741. CrossRefGoogle Scholar
  29. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., & Hawkes, D. (1999). Non-rigid registration using free-form deformations. IEEE Transactions on Medical Imaging, 18(1), 712–721. CrossRefGoogle Scholar
  30. Staring, M., Klein, S., & Pluim, J. P. W. (2006). Nonrigid registration using a rigidity constraint. In J. M. Reihnardt, & J. P. W. Pluim (Eds.), Proceedings of the SPIE 2006: Medical imaging, 2006 (Vol. 6144, pp. 1–10). Boca Raton: SPIE. Google Scholar
  31. Trottenberg, U., Oosterlee, C., & Schüller, A. (2001). Multigrid. London: Academic Press. zbMATHGoogle Scholar
  32. Wells III, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1(1), 35–51. CrossRefGoogle Scholar
  33. Yoo, T. S. (2004). Insight into images: Principles and practice for segmentation, registration, and image analysis. AK Peters Ltd. Google Scholar
  34. Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of LübeckLübeckGermany

Personalised recommendations