Advertisement

International Journal of Computer Vision

, Volume 76, Issue 3, pp 231–243 | Cite as

Prior Knowledge, Level Set Representations & Visual Grouping

  • Mikael RoussonEmail author
  • Nikos Paragios
Article

Abstract

In this paper, we propose a level set method for shape-driven object extraction. We introduce a voxel-wise probabilistic level set formulation to account for prior knowledge. To this end, objects are represented in an implicit form. Constraints on the segmentation process are imposed by seeking a projection to the image plane of the prior model modulo a similarity transformation. The optimization of a statistical metric between the evolving contour and the model leads to motion equations that evolve the contour toward the desired image properties while recovering the pose of the object in the new image. Upon convergence, a solution that is similarity invariant with respect to the model and the corresponding transformation are recovered. Promising experimental results demonstrate the potential of such an approach.

Keywords

Level set method Distance transforms Curve propagation Similarity transformation Pose estimation Object extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Bascle, B. (1994). Contributions and applications of deformable models in computer vision. PhD thesis, University of Nice/Sophia Antipolis, France. Google Scholar
  2. Bertalmo, M., Sapiro, G., & Randall, G. (2000). Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 733. CrossRefGoogle Scholar
  3. Birchfield, S. (1998). Head tracking using intensity gradients and color histograms. In IEEE conference on computer vision and pattern recognition (pp. 232–237). Google Scholar
  4. Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1222–1239. CrossRefGoogle Scholar
  5. Bresson, X., Vandergheynst, P., & Thiran, P. (2003). A priori information in image segmentation: energy functional based on shape statistical model and image information. In IEEE international conference on image processing (Vol. 3, pp. 428–428). Google Scholar
  6. Caselles, V., Catte, F., Coll, B., & Dibos, F. (1993). A geometric model for edge detection numerische mathematik. Numerische Mathematik, 66, 1–31. zbMATHCrossRefMathSciNetGoogle Scholar
  7. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22, 61–79. zbMATHCrossRefGoogle Scholar
  8. Charpiat, G., Faugeras, O., & Keriven, R. (2003). Approximation of shape metrics and applications to shape warping and empirical shape statistics. Rapport de Recherche 4820. Google Scholar
  9. Chen, Y., Thiruvenkadam, H., Tagare, H., Huang, F., & Wilson, D. (2001). On the incorporation of shape priors int geometric active contours. In IEEE workshop on variational and level set methods in computer vision (pp. 145–152), Vancouver, Canada. Google Scholar
  10. Chen, Y., Thiruvenkadam, S., Huang, F., Gopinath, K., & Brigg, R. (2002). Simultaneous segmentation and registration for functional MR images. In ICPR (Vol. 1, p. 747). Google Scholar
  11. Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 790. CrossRefGoogle Scholar
  12. Cohen, L. (1991). On active contours and balloons. CVGIP: Image Understanding, 53, 211–218. zbMATHCrossRefGoogle Scholar
  13. Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models—their training and applications. Computer Vision and Image Understanding, 61, 38–59. CrossRefGoogle Scholar
  14. Cootes, T., Beeston, C., Edwards, G., & Taylor, C. (1999). A unified framework for atlas matching using active appearance models. In IPMI (p. 322). Google Scholar
  15. Cremers, D., Schnörr, C., & Weickert, J. (2001). Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework. In IEEE workshop in variational and level set methods (pp. 137–144). Google Scholar
  16. Cremers, D., Sochen, N., & Schnörr, C. (2003). Towards recognition-based variational segmentation using shape priors and dynamic labeling. In Scale-space (p. 388). Google Scholar
  17. Cremers, D., Osher, S. J., & Soatto, S. (2006). Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. International Journal of Computer Vision, 69(3), 335–351. CrossRefGoogle Scholar
  18. Dervieux, A., & Thomasset, F. (1979). A finite element method for the simulation of Raleigh–Taylor instability. Springer Lecture Notes in Mathematics, 771, 145–158. MathSciNetGoogle Scholar
  19. Dervieux, A., & Thomasset, F. (1980). Multifluid incompressible flows by a finite element method. In W. Reynolds & R. MacCormack (Eds.), Lecture notes in physics: Vol. 141. Seventh international conference on numerical methods in fluid dynamics (pp. 158–163). Google Scholar
  20. Dufour, R., Miller, E., & Galatsanos, N. (2002). Template matching based object recognition with unknown geometric parameters. IEEE Transactions on Image Processing, 11(12), 1385–1396. CrossRefMathSciNetGoogle Scholar
  21. Faugeras, O., & Keriven, R. (1998). Complete dense stereovision using level set methods. In ECCV (Vol. 1, p. 379). Google Scholar
  22. Fischler, A., & Elschlager, R. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computer, 22, 67–92. CrossRefGoogle Scholar
  23. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. zbMATHCrossRefGoogle Scholar
  24. Huang, X., Paragios, N., & Metaxas, D. (2006). Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1303–1318. CrossRefGoogle Scholar
  25. Jehan-Besson, S., Gastaud, M., Barlaud, M., & Aubert, G. (2003). Region-based active contours using geometrical and statistical features for image segmentation. IEEE International Conference in Image Processing, 2, 643–646. Google Scholar
  26. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1, 321–331. CrossRefGoogle Scholar
  27. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A. (1995). Gradient flows and geometric active contour models. In IEEE international conference on computer vision (pp. 810–815). Google Scholar
  28. Kimia, B., Tannenbaum, R., & Zucker, S. (1995). Shapes, shocks, and deformations, I: the components of 2-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15, 189–224. CrossRefGoogle Scholar
  29. Kimmel, R., & Bruckstein, A. (1995). Tracking level sets by level sets: a method for solving the shape from shading problem. Computer Vision and Image Understanding, 62, 47–58. CrossRefGoogle Scholar
  30. Leventon, M., Grimson, E., & Faugeras, O. (2000a). Level set based segmentation with intensity and curvature priors. In IEEE mathematical methods in biomedical image analysis (pp. 4–11). Google Scholar
  31. Leventon, M., Grimson, W., & Faugeras, O. (2000b). Statistical shape influence in geodesic active contours. In CVPR (p. 1316). Google Scholar
  32. Lipson, P., Yuille, A., Keeffe, D., Cavanaugh, J., Taaffe, J., & Rosenthal, D. (1990). Deformable templates for feature extraction from medical images. In ECCV (p. 413). Google Scholar
  33. Malladi, R., & Sethian, J. (1998). A real-time algorithm for medical shape recovery. In IEEE international conference in computer vision (pp. 304–310), Bombay, India. Google Scholar
  34. Malladi, R., Sethian, J., & Vemuri, B. (1994). Evolutionary fronts for topology-independent shape modeling and recovery. In ECCV (Vol. 1, p. 3). Google Scholar
  35. Metaxas, D. (1997). Physics-based deformable models: applications to computer vision, graphics and medical imaging. In Graphics and medical imaging. Google Scholar
  36. Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 22–26). Google Scholar
  37. Osher, S., & Paragios, N. (2003). Geometric level set methods in imaging, vision and graphics. Berlin: Springer. zbMATHCrossRefGoogle Scholar
  38. Osher, S. J., & Sethian, J. A. (1988). Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49. zbMATHCrossRefMathSciNetGoogle Scholar
  39. Paragios, N., & Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. The International Journal of Computer Vision, 46(3), 223–247. zbMATHCrossRefGoogle Scholar
  40. Paragios, N., Rousson, M., & Ramesh, V. (2002). Matching distance functions: a shape-to-area variational approach for global-to-local registration. In ECCV (Vol. 2, p. 775). Google Scholar
  41. Paragios, N., Rousson, M., & Ramesh, V. (2003). Non-rigid registration using distance functions. Computer Vision and Image Understanding, 23, 142–165. CrossRefGoogle Scholar
  42. Paragios, N., Chen, Y., & Faugeras, O. (2005). Handbook of mathematical models in computer vision. New York: Springer. zbMATHGoogle Scholar
  43. Rousson, M., & Cremers, D. (2005). Efficient Kernel density estimation of shape and intensity priors for level set segmentation. In International conference on medical image computing and computer-assisted intervention (MICCAI) (Vol. 2, pp. 757–764). Google Scholar
  44. Rousson, M., & Deriche, R. (2002). A variational framework for active and adaptive segmentation of vector valued images. In IEEE workshop on motion and video computing (pp. 56–61), Orlando, FL. Google Scholar
  45. Rousson, M., & Paragios, N. (2002). Shape priors for level set representations. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Proceedings of the 7th European conference on computer vision (Vol. 2, pp 78–92), Copenhagen, Denmark. Google Scholar
  46. Rousson, M., Paragios, N., & Deriche, R. (2004). Implicit active shape models for 3D segmentation in MR imaging. In MICCAI (Vol. 1, p. 209). Google Scholar
  47. Samson, C., Blanc-Feraud, L., Aubert, G., & Zerubia, J. (1999). A level set method for image classification. In International conference on scale space theories in computer vision (pp. 306–317). Google Scholar
  48. Sapiro, G. (2001). Geometric partial differential equations and image analysis. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  49. Sethian, J. (1996). Level set methods. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  50. Staib, L., & Duncan, J. (1992). Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 1061. CrossRefGoogle Scholar
  51. Sussman, M., Smereka, P., & Osher, S. (1994). A level set method for computing solutions of incompressible two-phase flows. Journal of Computational Physics, 114, 146–159. zbMATHCrossRefGoogle Scholar
  52. Taron, M., Paragios, N., & Jolly, M. (2005). Modelling shapes with uncertainties: higher order polynomials, variable bandwidth kernels and nonparametric density estimation. In ICCV ’05: Proceedings of the tenth IEEE international conference on computer vision (pp. 1659-1666), Washington, DC, USA. Google Scholar
  53. Tek, H., & Kimia, B. (1995). Image segmentation by reaction-diffusion bubbles. In ICCV (p. 156). Google Scholar
  54. Tikhonov, A. (1992). Ill-posed problems in natural sciences. Coronet. Google Scholar
  55. Tsai, A., Wells, A. Y. A. W., Tempany, C., Tucker, D., Fan, A., Grimson, A., & Willsky, A. (2001). Model-based curve evolution technique for image segmentation. In IEEE conference on computer vision and pattern recognition (pp. 463–468). Google Scholar
  56. Tsai, A., Yezzi, A., Jr., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., & Willsky, A. (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22, 137. CrossRefGoogle Scholar
  57. Veltkamp, R., & Hagedoorn, M. (1999). State-of-the-art in shape matching. Technical report, Utrecht University, Department of Computer Science. Google Scholar
  58. Vese, L., & Chan, T. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50, 271. zbMATHCrossRefGoogle Scholar
  59. Wang, Y., & Staib, L. (1998). Boundary finding with correspondence using statistical shape models. In CVPR (p. 338). Google Scholar
  60. Yezzi, A., & Soatto, S. (2003). Stereoscopic segmentation. International Journal of Computer Vision, 53, 31. CrossRefGoogle Scholar
  61. Yezzi, A., Zollei, L., & Kapur, T. (2001). A variational framework for joint segmentation and registration. In IEEE mathematical methods in biomedical image analysis (pp. 44–51). Google Scholar
  62. Yuille, A. (1991). Deformable templates for face recognition. Journal of Cognitive Neuroscience, 3, 59–70. CrossRefGoogle Scholar
  63. Yuille, A., Hallinan, P., & Cohen, D. (1992). Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8, 99–111. CrossRefGoogle Scholar
  64. Zhao, K., Chan, T. F., Merriman, B., & Osher, S. (1996). A variational level set approach to multiphase motion. Journal of Computational Physics, 127, 179. zbMATHCrossRefMathSciNetGoogle Scholar
  65. Zhu, S., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/Mdl for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 884–900. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Siemens Corporate ResearchPrincetonUSA
  2. 2.M.A.S Ecole Centrale de ParisChatenay-MalabryFrance

Personalised recommendations