Amiaz, T. and Kiryati, N. 2005. Dense discontinuous optical flow via contour-based segmentation. In *Proc. IEEE Int. Conf. Image Processing*, Lausanne, vol 4, pp. 1264–1267.

Aubert, G., Barlaud M., Faugeras, O., and Jehan-Besson, S. 2003. Image segmentation using active contours: Calculus of variations or shape gradients?

*SIAM Journal of Applied Mathematics*, 63(6):2128–2154.

CrossRefMathSciNetMATHGoogle ScholarBesag, J. 1986. On the statistical analysis of dirty pictures.

*J. Roy. Statist. Soc., Ser. B*., 48(3):259–302.

MathSciNetMATHGoogle ScholarBigün, J. and Granlund G. 1987. Optimal orientation detection of linear symmetry. In *Proceedings of the 1st International Conference on Computer Vision*, London, England, IEEE Computer Society Press, pp. 433–438.

Bigün, J., Granlund, G.H., and Wiklund, J. 1991. Multidimensional orientation estimation with applications to texture analysis and optical flow.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 13(8):775–790.

CrossRefGoogle ScholarBlake, A. and Zisserman, A. 1987. *Visual Reconstruction*. MIT Press.

Boykov, Y., Veksler O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 23(11):1222–1239.

CrossRefGoogle ScholarBrox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In T. Pajdla and V. Hlavac, (Eds.), *European Conf. on Computer Vision*, Vol. 3024 of *LNCS*, Prague Springer, pp. 25–36.

Brox, T., Bruhn, A., and Weickert, J. 2006. Variational motion segmentation with level sets. In A. Leonardis, H. Bischof and A. Pinz (Eds.), *European Conference on Computer Vision (ECCV)*, Graz, Austria, Springer, LNCS, Vol. 3951, pp. 471–483.

Brox, T., Rousson, M., Deriche, R., and Weickert, J. 2003. Unsupervised segmentation incorporating colour, texture, and motion. In N. Petkov and M. A. Westenberg (Eds.), *Computer Analysis of Images and Patterns*, vol. 2756 of *LNCS*, Groningen, The Netherlands Springer, pp. 353–360.

Brox, T. and Weickert, J. 2004. Level set based image segmentation with multiple regions. In H. Bülthoff, M. Giese, and B. Schölkopf (Eds.), *In Pattern Recognition, Springer LNCS 3175, C.-E. Rasmussen*
*26th DAGM*, Tübingen, Germany, pp. 415–423.

Brox, T. and Weickert, J. 2004. A TV flow based local scale measure for texture discrimination. In T. Pajdla and V. Hlavac, (eds.), *European Conf. on Computer Vision*, Vol. 3022 of *LNCS*, Prague,Springer, pp. 578–590.

Caselles, V., Catté, F., Coll, T., and Dibos, F. 1993. A geometric model for active contours in image processing.

*Numer. Math*., 66:1–31.

CrossRefMathSciNetMATHGoogle ScholarCaselles, V., Kimmel, R., and Sapiro, G. 1995. Geodesic active contours. In *Proc. IEEE Intl. Conf. on Comp. Vis*., Boston, USA, pp. 694–699.

Chan, T.F., and Vese, L.A. 2001. Active contours without edges.

*IEEE Trans. Image Processing*, 10(2):266–277.

CrossRefMATHGoogle ScholarCharpiat, G., Faugeras, O., and Keriven, R. 2005. Approximations of shape metrics and application to shape warping and empirical shape statistics.

*Journal of Foundations of Computational Mathematics*, 5(1):1–58.

CrossRefMathSciNetMATHGoogle ScholarChen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K. S., Briggs, R.W., and Geiser, E. 2002. Using shape priors in geometric active contours in a variational framework.

*Int. J. of Computer Vision*, 50(3):315–328.

CrossRefMATHGoogle ScholarDe Cock, K. and De Moor, B. 2000. Subspace angles between linear stochastic models. In *Int. Conf. on Decision and Control*, vol 2, pp. 1561–1566.

Cohen, L.D. and Cohen, I. 1993. Finite-element methods for active contour models and balloons for 2-d and 3-d images.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 15(11):1131–1147

CrossRefGoogle ScholarCremers, D. 2003. A variational framework for image segmentation combining motion estimation and shape regularization. In C. Dyer and P. Perona (Eds.), *IEEE Conf. on Comp. Vis. and Patt. Recog*., vol 1, pp. 53–58.

Cremers, D. 2006. Dynamical statistical shape priors for level set based tracking.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 28(8):1262–1273.

CrossRefGoogle ScholarCremers, D., Kohlberger, T., and Schnörr, C. 2002. Nonlinear shape statistics in Mumford–Shah based segmentation. In A. Heyden et al. (Eds.), *Europ. Conf. on Comp. Vis*., vol. 2351 of *LNCS*, Copenhagen Springer, pp. 93–108.

Cremers, D., Osher, S.J., and Soatto, S. 2006. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation.

*Int. J. of Computer Vision*, 69(3):335–351.

CrossRefGoogle ScholarCremers, D. and Schnörr, C. 2002. Motion Competition: Variational integration of motion segmentation and shape regularization. In L. van Gool (Ed.), *Pattern Recognition*, vol. 2449 of *LNCS*, Zürich, Springer, pp. 472–480.

Cremers, D. and Soatto, S. 2003. Variational space-time motion segmentation. In B. Triggs and A. Zisserman (Eds.), *IEEE Int. Conf. on Computer Vision*, Nice, vol. 2, pp. 886–892.

Cremers, D., and Soatto, S. 2005. Motion Competition: A variational framework for piecewise parametric motion segmentation.

*Int. J. of Computer Vision*, 62(3):249–265.

CrossRefGoogle ScholarCremers, D., Sochen, N., and Schnörr, C. 2006. A multiphase dynamic labeling model for variational recognition-driven image segmentation.

*Int. J. of Computer Vision*, 66(1):67–81.

CrossRefGoogle ScholarCremers, D., Tischhäuser, F., Weickert, J., and Schnörr, C. 2002. Diffusion Snakes: Introducing statistical shape knowledge into the Mumford–Shah functional.

*Int. J. of Computer Vision*, 50(3):295–313.

CrossRefMATHGoogle ScholarCremers, D. and Yuille, A.L. 2003. A generative model based approach to motion segmentation. In B. Michaelis and G. Krell (Eds.), *Pattern Recognition*, vol. 2781 of *LNCS*, Magdeburg, Springer, pp. 313–320.

Cross, G. and Jain, A. 1983. Markov random field texture models.

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 5:25–39.

Google Scholarde Luis García, R., Deriche, R., Rousson, M., and Alberola-López, C. 2005. Tensor processing for texture and colour segmentation. Scandinavian Conference on Image Analysis 2005: 1117–1127.

Delingette, H., and Montagnat, J. 2000. New algorithms for controlling active contours shape and topology. In D. Vernon, (Ed.), *Proc. of the Europ. Conf. on Comp. Vis*., vol. 1843, of *LNCS*, Springer, pp. 381–395.

Dervieux, A. and Thomasset, F. 1979. A finite element method for the simulation of Raleigh-Taylor instability.

*Springer Lect. Notes in Math*., 771:145–158.

Google ScholarDervieux, A. and Thomasset, F. 1981. Multifluid incompressible flows by a finite element method. *Lecture Notes in Physics*, 11:158–163

Doretto, G., Chiuso, A., Wu, Y.N., and Soatto, S. 2003. Dynamic textures.

*Int. Journal of Computer Vision*, 51(2):91–109.

CrossRefMATHGoogle ScholarDoretto, G., Cremers, D., Favaro, P., and Soatto, S. 2003. Dynamic texture segmentation. In B. Triggs and A. Zisserman (Eds.), *IEEE Int. Conf. on Computer Vision*, Nice, vol 2, pp. 1236–1242.

Duci, A., Yezzi, A., Mitter, S., and Soatto, S. 2003. Shape representation via harmonic embedding. In *ICCV*, pp. 656–662.

Förstner, M.A., and Gülch, E. 1987. A fast operator for detection and precise location of distinct points, corners and centers of circular features. In *Proceedings of the Intercommission Workshop of the International Society for Photogrammetry and Remote Sensing*, Interlaken, Switzerland.

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 6(6):721–741.

MATHGoogle ScholarGrady, L. 2006. Random walks for image segmentation. *IEEE Trans. on Patt. Anal. and Mach. Intell*., to appear.

Granlund, G.H. and Knutsson, H. 1995. *Signal Processing for Computer Vision*, Kluwer Academic Publishers.

Grenander, U., Chow, Y., and Keenan, D.M. 1991.

*Hands: A Pattern Theoretic Study of Biological Shapes*, Springer, New York.

Google ScholarHassner, M. and Sklansky, J. 1980. The use of Markov random fields as models of texture.

*Computer Graphics and Image Processing*, 12:357–370.

CrossRefGoogle ScholarHeiler, M. and Schnoerr, C. 2003. Natural image statistics for natural image segmentation. In *IEEE Int. Conf. on Computer Vision*, pp. 1259–1266

Herbulot, A., Jehan-Besson, S., Barlaud, M., and Aubert, G. 2004. Shape gradient for multi-modal image segmentation using mutual information. In *Int. Conf. on Image Processing*.

Ising, E. 1925. Beitrag zur Theorie des Ferromagnetismus.

*Zeitschrift für Physik*, 23:253–258.

CrossRefGoogle ScholarJehan-Besson, S., Barlaud, M., and Aubert, G. 2003. DREAM2S: Deformable regions driven by an eulerian accurate minimization method for image and video segmentation.

*Int. J. of Computer Vision*, 53(1):45–70.

CrossRefGoogle ScholarJepson, A., and Black, M.J. 1993. Mixture models for optic flow computation. In *Proc. IEEE Conf. on Comp. Vision Patt. Recog*., pp. 760–761.

Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models.

*Int. J. of Computer Vision*, 1(4):321–331.

CrossRefGoogle ScholarKeuchel, J., Schnörr, C., Schellewald, C., and Cremers, D. 2003. Binary partitioning, perceptual grouping, and restoration with semidefinite programming.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 25(11):1364–1379.

CrossRefGoogle ScholarKichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A. J. 1995. Gradient flows and geometric active contour models. In *IEEE Int. Conf. on Computer Vision*, pp. 810–815.

Kim, J., Fisher, J.W., Yezzi, A., Cetin, M. and Willsky, A. 2002. Nonparametric methods for image segmentation using information theory and curve evolution. In *Int. Conf. on Image Processing*, vol. 3, pp. 797–800.

Lachaud, J.-O. and Montanvert, A. 1999. Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction.

*Medical Image Analysis*, 3(2):187–207.

CrossRefGoogle ScholarLeclerc, Y.G. 1989. Constructing simple stable description for image partitioning.

*The International Journal of Computer Vision*, 3(1):73–102

CrossRefGoogle ScholarLeitner, F. and Cinquin, P. 1991. Complex topology 3d objects segmentation. In *SPIE Conf. on Advances in Intelligent Robotics Systems*, Boston, vol. 1609.

Lenglet, C., Rousson, M., and Deriche, R. 2004. Toward segmentation of 3D probability density fields by surface evolution: Application to diffusion MRI. INRIA Research Report.

Lenglet, C., Rousson, M., Deriche, R., and Faugeras, O. 2004. Statistics on multivariate normal distributions: A geometric approach and its application to diffusion tensor MRI. INRIA Research Report.

Leung, T. and Malik, J. 2001. Representing and recognizing the visual appearance of materials using three-dimensional textons.

*Int. J. of Computer Vision*, 43(1):29–44.

CrossRefMATHGoogle ScholarLeventon, M., Grimson, W., and Faugeras, O. 2000. Statistical shape influence in geodesic active contours. In *Int. Conf. on Computer Vision and Pattern Recognition*, Hilton Head Island, SC, vol. 1, pp. 316–323.

Lindeberg, T. 1994. *Scale-Space Theory in Computer Vision*. Kluwer Academic Publishers.

Malik, J., Belongie, S., Leung, T., and Shi, J. 2001. Contour and texture analysis for image segmentation.

*Int. J. of Computer Vision*, 43(1):7–27.

CrossRefMATHGoogle ScholarMalladi, R., Sethian, J.A., and Vemuri, B.C. 1994a. Evolutionary fronts for topology-independent shape modeling and recovery. In *Europ. Conf. on Computer Vision*, vol. 1, pp. 3–13.

Malladi, R., Sethian, J.A., and Vemuri, B.C. 1994b. A topology independent shape modeling scheme. In *SPIE Conf. on Geometric Methods in Comp. Vision II*, vol. 2031, pp. 246–258.

Mallat, S. 1989. Multiresolution approximations and wavelet orthonormal bases of

*L*
^{2}(

*R*).

*Trans. Amer. Math. Soc*., 315:69–87.

CrossRefMathSciNetMATHGoogle ScholarMansouri, A., Mitiche, A., and Feghali, R. 2002. Spatio-temporal motion segmentation via level set partial differential equations. In *Proc. of the 5th IEEE Southewst Symposium on Image Analysis and Interpretation (SSIAI)*, Santa Fe.

Martin, P., Refregier, P., Goudail, F., and Guerault, F. 2004. Influence of the noise model on level set active contour segmentation.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 26(6):799–803.

CrossRefGoogle ScholarMcInerney, T. and Terzopoulos, D. 1995. Topologically adaptable snakes. In *Proc. 5th Int. Conf. on Computer Vision*, Los Alamitos, California, IEEE Comp. Soc. Press, pp. 840–845.

Mumford, D., and Shah, J. 1989. Optimal approximations by piecewise smooth functions and associated variational problems.

*Comm. Pure Appl. Math*., 42:577–685.

MathSciNetMATHGoogle ScholarNain, D., Yezzi, A., and Turk, G. 2003. Vessel segmentation using a shape driven flow. In *Intl. Conf. on Medical Image Computing and Comp. Ass. Intervention (MICCAI)*, pp. 51–59.

Osher, S.J., and Sethian, J.A. 1988. Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations.

*J. of Comp. Phys*., 79:12–49.

CrossRefMathSciNetMATHGoogle ScholarParagios, N. and Deriche, R. 2002. Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision.

*Journal of Visual Communication and Image Representation*, 13(1/2):249–268.

CrossRefGoogle ScholarParagios, N. and Deriche, R. 2005. Geodesic active regions and level set methods for motion estimation and tracking.

*Computer Vision and Image Understanding*, 97(3):259–282.

CrossRefGoogle ScholarPennec, X., Fillard, P., and Ayache, N. 2005. A Riemannian framework for tensor computing. *International Journal of Computer Vision*, 65(1).

Perkins, W.A. 1980. Area segmentation of images using edge points.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 2(1):8–15.

CrossRefGoogle ScholarRao, A.R., and Schunck, B.G. 1991. Computing oriented texture fields.

*CVGIP: Graphical Models and Image Processing*, 53:157–185.

CrossRefGoogle ScholarRochery, M., Jermyn, I., and Zerubia, J. 2006. Higher order active contours.

*Int. J. of Computer Vision*, 69(1): 1573–1405.

CrossRefGoogle ScholarRousson, M. 2004. *Cues Integrations and Front Evolutions in Image Segmentation*. PhD thesis, Université de Nice-Sophia Antipolis.

Rousson, M., Brox, T., and Deriche, R. 2003. Active unsupervised texture segmentation on a diffusion based feature space. In *Proc. IEEE Conf. on Comp. Vision Patt. Recog*., Madison, WI, pp. 699–704.

Rousson, M. and Cremers, D. 2005. Efficient kernel density estimation of shape and intensity priors for level set segmentation. In *Intl. Conf. on Medical Image Computing and Comp. Ass. Intervention (MICCAI)*, vol. 1, pp. 757–764.

Rousson, M. and Deriche, R. 2002. A variational framework for active and adaptative segmentation of vector valued images. RR 4515, INRIA.

Rousson, M. and Deriche, R. 2002. A variational framework for active and adaptive segmentation of vector valued images. In *Proc. IEEE Workshop on Motion and Video Computing*, Orlando, Florida, pp. 56–62.

Rousson, M., Lenglet, C., and Deriche, R. 2004. Level set and region based surface propagation for diffusion tensor MRI segmentation. In *Computer Vision Approaches to Medical Image Analysis (CVAMIA) and Mathematical Methods in Biomedical Image Analysis (MMBIA) Workshop*, Prague.

Rousson, M. and Paragios, N. 2002. Shape priors for level set representations. In A. Heyden et al. (Eds.), *Europ. Conf. on Comp. Vis*., Springer, vol. 2351 of *LNCS*, pp. 78–92.

Rousson, M., Paragios, N., and Deriche, R. 2004. Implicit active shape models for 3d segmentation in MRI imaging. In *Intl. Conf. on Medical Image Computing and Comp. Ass. Intervention (MICCAI)*, Springer, vol. 2217 of *LNCS*, pp. 209–216.

Samson, C., Blanc-Feraud, L., Aubert, G., and Zerubia, J. 2000. A variational model for image classification and restoration.

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(5):460–472.

CrossRefGoogle ScholarSchnoerr, C. 1992. Computation of discontinuous optical flow by domain decomposition and shape optimization.

*Int. J. of Computer Vision*, 8(2):153–165.

CrossRefGoogle ScholarShi, J. and Malik, J. 2000. Normalized cuts and image segmentation.

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(8):888–905.

CrossRefGoogle ScholarSimoncelli, P., Freeman, W., Adelson, H., and Heeger, J. 1992. Shiftable multiscale transforms.

*IEEE trans. on Information Theory*, 38:587–607.

CrossRefMathSciNetGoogle ScholarSkovgaard, L.T. 1984. A Riemannian geometry of the multivariate normal model.

*Scand. J. Statistics*, 11:211–223.

MathSciNetMATHGoogle ScholarSokolowski, J. and Zolesio, J.P. 1991. Introduction to shape optimization. *Computational Mathematics. Springer Verlag*.

Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., and Willsky, A. 2001. Model–based curve evolution technique for image segmentation. In *Comp. Vision Patt. Recog*., Kauai, Hawaii. pp. 463–468.

Tsai, A., Yezzi, A.J., and Willsky, A.S. 2001. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification.

*IEEE Trans. on Image Processing*, 10(8):1169–1186.

CrossRefMATHGoogle ScholarTsai, A., Yezzi, A. J., and Willsky, A. S. 2003. A shape-based approach to the segmentation of medical imagery using level sets.

*IEEE Trans. on Medical Imaging*, 22(2):137–154.

CrossRefGoogle ScholarTschumperlé, D. and Deriche, R. 2001a. Diffusion tensor regularization with constraints preservation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, Kauai Marriott, Hawaii.

Tschumperlé, D. and Deriche, R. 2001b. Regularization of orthonormal vector sets using coupled PDE’s. In *IEEE Workshop on Variational and Level Set Methods*, Vancouver, Canada, pp. 3–10.

Unal, G., Krim, H., and Yezzi, A.Y. 2005. Information-theoretic active polygons for unsupervised texture segmentation. *Int. J. of Computer Vision*.

Vese, L.A., 2003. Multiphase object detection and image segmentation. In S. J. Osher and N. Paragios (Eds.),

*Geometric Level Set Methods in Imaging, Vision and Graphics*, New York, Springer, pp. 175–194.

CrossRefGoogle ScholarVese, L.A., and Chan, T.F. 2002. A multiphase level set framework for image segmentation using the Mumford and Shah model.

*The International Journal of Computer Vision*, 50(3):271–293.

CrossRefMATHGoogle ScholarWang, J.Y.A., and Adelson, E.H. 1994. Representating moving images with layers.

*IEEE Trans. on Image Processing*, 3(5):625–638.

CrossRefGoogle ScholarWang, Z. and Vemuri, B.C. 2004. An affine invariant tensor dissimilarity measure and its application to tensor-valued image segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition*, Washington, DC.

Weickert, J. and Brox, T. 2002. Diffusion and regularization of vector and matrix-valued images. In

*Contemporary Mathematics*, vol. 313, pp. 251–268.

MathSciNetGoogle ScholarYezzi, A., Tsai, A., and Willsky, A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In *Proceedings of the 7th International Conference on Computer Vision*, Kerkyra, Greece, vol. II, pp. 898–903.

Di Zenzo, S. 1986. A note on the gradient of a multi-image.

*Computer Vision, Graphics, and Image Processing*, 33:116–125.

CrossRefGoogle ScholarZhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion.

*J. of Comp. Phys*., 127:179–195.

CrossRefMathSciNetMATHGoogle ScholarZhu, S.C., Wu, Y., and Mumford, D. 1998. Filters, random fields and maximum entropy (frame).

*The International Journal of Computer Vision*, 27(2):1–20.

CrossRefGoogle ScholarZhu, S.C. and Yuille, A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation.

*IEEE Trans. on Patt. Anal. and Mach. Intell*., 18(9):884–900.

CrossRefGoogle Scholar