International Journal of Computer Vision

, Volume 69, Issue 1, pp 137–144 | Cite as

Contour Inferences for Image Understanding

  • Washington Mio
  • Anuj Srivastava
  • Xiuwen Liu
Short Papers


We present a new approach to the algorithmic study of planar curves, with applications to estimations of contours in images. We construct spaces of curves satisfying constraints suited to specific problems, exploit their geometric structure to quantify properties of contours, and solve optimization and inference problems. Applications include new algorithms for computing planar elasticae, with enhanced performance and speed, and geometric algorithms for the estimation of contours of partially occluded objects in images.


curve interpolation elastica partial occlusions shape completion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruckstein, A. and Netravali, N. 1990. On minimal energy trajectories. Computer Vision, Graphics and Image Processing, 49:283–296.CrossRefGoogle Scholar
  2. Chan, T., Shen, J., and Vese, L. 2003. Variational PDE Models in Image Processing. Notices Amer. Math. Soc., 50:14–26.MathSciNetGoogle Scholar
  3. Cootes, T.F., Cooper, D., Taylor, C.J., and Graham, J. 1995. Active Shape Models—Their Training and Application. Computer Vision and Image Understanding, 61:38–59.CrossRefGoogle Scholar
  4. Do Carmo, M.P. 1976. Differential Geometry of Curves and Surfaces, Prentice Hall, Inc.Google Scholar
  5. Euler, L. 1744. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattisimo Sensu Accepti. Bousquet, Lausannae e Genevae, E65A. O. O. Ser. I, 24.Google Scholar
  6. Horn, B. 1983. The Curve of Least Elastic Energy. ACM Trans. Math. Software, 9:441–460.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Joshi, S., Srivastava, A., Mio, W., and Liu, X. 2004. Hierarchical Organization of Shapes for Efficient Retrieval. In Proc. ECCV 2004, LNCS, Prague, Czech Republic, pp. 570–581.Google Scholar
  8. Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active Contour Models. International Journal of Computer Vision, 1: 321–331.CrossRefGoogle Scholar
  9. Kimia, B., Frankel, I., and Popescu, A. 2003. Euler Spiral for Shape Completion. International Journal of Computer Vision, 54:159–182.CrossRefGoogle Scholar
  10. Klassen, E., Srivastava, A., Mio, W., and Joshi, S. 2004. Analysis of Planar Shapes Using Geodesic Paths on Shape Spaces. Trans. Pattern Analysis and Machine Intelligence, 26:372–383.CrossRefGoogle Scholar
  11. Mio, W., Srivastava, A., and Klassen, E. 2004a. Interpolations with Elastica in Euclidean Spaces. Quarterly of Applied Mathematics, 62:359–378.MathSciNetGoogle Scholar
  12. Mio, W., Srivastava, A., and Liu, X. 2004b. Learning and Bayesian Shape Extraction for Object Recognition. In Proc. ECCV 2004, LNCS, Prague, Czech Republic, pp. 62–73.Google Scholar
  13. Mumford, D. 1994. Elastica and Computer Vision, Springer, New York. pp. 491–506.Google Scholar
  14. Palais, R.S. 1963. Morse Theory on Hilbert Manifolds. Topology, 2:299–340.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Royden, H. 1988. Real Analaysis, Prentice Hall.Google Scholar
  16. Sethian, J. 1996. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge University Press.Google Scholar
  17. Sharon, E., Brandt, A., and Basri, R. 2000. Completion Energies and Scale. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1117–1131.CrossRefGoogle Scholar
  18. Weiss, I. 1988. 3D Shape Representation by Contours. Computer Vision, Graphics and Image Processing, 41:80–100.Google Scholar
  19. Williams, L. and Jacobs, D. 1997. Local Parallel Computation of Stochastic Completion Fields. Neural Computation, 9:837–858.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahassee
  2. 2.Department of StatisticsFlorida State UniversityTallahassee
  3. 3.Department of Computer ScienceFlorida State UniversityTallahassee

Personalised recommendations