International Journal of Computer Vision

, Volume 64, Issue 2–3, pp 203–219 | Cite as

Analysis of Iterative Methods for Solving a Ginzburg-Landau Equation

  • Alfio Borzi
  • Harald Grossauer
  • Otmar Scherzer


Very recently we have proposed to use a complex Ginzburg-Landau equation for high contrast inpainting, to restore higher dimensional (volumetric) data (which has applications in frame interpolation), improving sparsely sampled data and to fill in fragmentary surfaces. In this paper we review digital inpainting algorithms and compare their performance with a Ginzburg-Landau inpainting model. For the solution of the Ginzburg-Landau equation we compare the performance of several numerical algorithms. A stability and convergence analysis is given and the consequences for applications to digital inpainting are discussed.


Ginzburg-Landau equation inpainting diffusion filtering non-linear partial differential equations variational problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosio, L. and Dancer, N. 2000. Calculus of Variations and Partial Differential Equations, Springer Verlag.Google Scholar
  2. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., and Verdera, J. 2001. Filling–in by joint interpolation of vector fields and gray levels, IEEE Transactions on Signal Processing, 10(8):1200– 1211.Google Scholar
  3. Bertalmio, M., Bertozzi, A., and Sapiro, G. 2001. Navier–stokes, fluid dynamics, and image and video inpainting, IEEE CVPR 2001, Hawaii, USA.Google Scholar
  4. Bertalmio, M., Sapiro, G., Ballester, C., and Caselles, V. 2000. Image inpainting, Computer Graphics, SIGGRAPH 2000.Google Scholar
  5. Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. 2003. Simultaneous texture and structure image inpainting, IEEE Transactions on Image Processing, 12(8):882–889.CrossRefGoogle Scholar
  6. Bethuel, F., Brezis, H., and Hélein, F. 1994. Ginzburg–Landau vortices. In Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser.Google Scholar
  7. Bohr, T., Huber, G., and Ott, E. 1997. The structure of spiral–domain patterns and shocks in the 2D complex Ginzburg–Landau equation, Physica D, 106:95–112.Google Scholar
  8. Borzi, A. 2004. Solution of lambda-omega systems: Theta-schemes and multigrid methods}. Numerische Mathematik, 54(6):1050–1072.Google Scholar
  9. Caselles, V., Coll, B., and Morel, J. 1996. A Kanizsa programme}, Progress in Nonlinear Differential Equations and their Applications, 25:35–55.Google Scholar
  10. Chan, T., Kang, S., and Shen, J. 2002. Euler’s elastica and curvature based inpainting, SIAM Journal of Applied Mathematics, 63(2):564–592.CrossRefGoogle Scholar
  11. Chan, T. and Shen, J. 2001. Non–texture inpainting by curvature–driven diffusions (cdd), Journal of Visual Communication and Image Representation, 12(4):436–449.CrossRefGoogle Scholar
  12. Chan, T. and Shen, J. 2002. Mathematical models for local nontexture inpaintings, SIAM Journal of Applied Mathematics, 62(3):1019–1043.CrossRefGoogle Scholar
  13. Chen, L. and Shen, J. 1998. Applications of semi–implicit Fourier–spectral methods to phase field equations}, Computer Physics Communications, 108:147–158.CrossRefGoogle Scholar
  14. Davis, J., Marschner, S., Garr, M., and Levoy, M. 2002. Filling holes in complex surfaces using volumetric diffusion}, First International Symposium on 3D Data Processing, Visualization, and Transmission Padua, Italy, June 19–21.Google Scholar
  15. Efros, A.A. and Leung, T.K. 1999. Texture synthesis by non–parametric sampling}. In Proceedings of the Seventh International Conference on Computer Vision, Corfu, Greece.Google Scholar
  16. Esedoglu, S. and Shen, J. 2002. Digital inpainting based on the Mumford–Shah–Euler image model, European Journal of Applied Mathematics, 13:353–370.CrossRefGoogle Scholar
  17. Grossauer, H. 2004. A Combined PDE and texture synthesis approach to inpainting Proc. ECCV′04 Tom Pajdla and Ji Matas (Eds.), Vol. 2.Google Scholar
  18. Grossauer, H. 2004. A combined PDE and Texture Synthesis Approach to Inpainting}. European Conference on Computer Vision, LNCS 3022, T. Pajdla and J. Matas (eds.), pp. 214–224.Google Scholar
  19. Grossauer, H. and Scherzer, O. 2003. Using the complex Ginzburg–Landau equation for digital inpainting in 2D and 3D, Scale Space Methods in Computer Vision, Lecture Notes in Computer Science 2695, Springer.Google Scholar
  20. Igehy, H. and Pereira, L. 1997. Image replacement through texture synthesis. In Proceedings of the 1997 IEEE International Conference on Image Processing.Google Scholar
  21. Ipsen, M. and Sorensen, P. 2000. Finite wavelength instabilities in a slow mode coupled complex Ginzburg–Landau equation, Physical Review Letters, 84(11):2389.CrossRefPubMedGoogle Scholar
  22. Joyeux, L., Buisson, O., Besserer, B., and Boukir, S. 1999. Detection and removal of line scratches in motion picture films}. In Proceedings of CVPR’99, IEEE Int. Conf. on Computer Vision and Pattern Recognition, June, Fort Collins, Colorado, USA.Google Scholar
  23. Landau, L. and Ginzburg, V. 1950. On the theory of superconductivity, Journal of Experimental and Theoretical Physics (USSR), 20, p. 1064.Google Scholar
  24. L¨uckenfüller und Farbmischer, 24/2002. Bildkorrekturverfahren: beim Menschen gelernt, c’t–Magazin für Computer Technik, Heise Zeitschriften Verlag, Hannover, p. 190.Google Scholar
  25. Masnou, S. 2002. Disocclusion: A variational approach using level lines, IEEE Transactions on Signal Processing, 11(2), pp. 68–76.Google Scholar
  26. Masnou, S. and Morel, J.-M. 1998. Level lines based disocclusion, in Proceedings of the 1998 IEEE International Conference on Image Processing, pp. 259–263.Google Scholar
  27. Morton, K.W. and Mayers, D.F. 1994. Numerical solution of partial differential equations, Cambridge University Press.Google Scholar
  28. Oliveira, M., Bowen, B., McKenna, R., and Chang, Y. 2001. Fast digital inpainting. In Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), Marbella, Spain, pp. 261–266.Google Scholar
  29. Ramasubramanian, M., Pattanaik, S., and Greenberg, D. 1999. A perceptually based physical error metric for realistic image synthesis, In Proceedings of SIGGRAPH 99. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 73– 82.Google Scholar
  30. Thenaz, P., Blu, T., and Unser, M. 2000. Handbook of Medical Imaging, Processing and Analysis, I.N. Bankman (ed)., Academic Press: San Diego CA, USA, pp. 393–420.Google Scholar
  31. Thomas, J. 1995. Numerical partial differential equations: Finite difference methods, Texts in Applied Mathematics, Springer, vol. 22.Google Scholar
  32. Unser, M. 2000. Sampling–50 years after Shannon. Proceedings of the IEEE, 88(4):569–587.Google Scholar
  33. van Hecke, M., de Wit, E., and van Saarloos, W. 1995. Coherent and incoherent drifting pulse dynamics in a complex Ginzburg–Landau equation, Physical Review Letters, 75(21):3830.CrossRefPubMedGoogle Scholar
  34. Weickert, J. 1998. Anisotropic diffusion in image processing, B.G. Teubner, Stuttgart.Google Scholar
  35. Yamauchi, H., Haber, J., and Seidel, H.-P. 2003. Image restoration using multiresolution texture synthesis and image inpainting. In Proc. Computer Graphics International (CGI) Tokyo, Japan, 9-11 July, pp. 120–125.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Alfio Borzi
    • 1
  • Harald Grossauer
    • 2
  • Otmar Scherzer
    • 2
  1. 1.Institute for MathematicsUniversity of GrazGrazAustria
  2. 2.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations