Advertisement

International Journal of Computer Vision

, Volume 64, Issue 2–3, pp 157–169 | Cite as

An Explanation for the Logarithmic Connection between Linear and Morphological System Theory

Article

Abstract

Dorst/van den Boomgaard and Maragos introduced the slope transform as the morphological equivalent of the Fourier transform. Generalising the conjugacy operation from convex analysis it formed the basis of a morphological system theory that bears an almost logarithmic relation to linear system theory; a connection that has not been fully understood so far. Our article provides an explanation by disclosing that morphology in essence is linear system theory in specific algebras. While linear system theory uses the standard plus-prod algebra, morphological system theory is based on the max-plus algebra and the min-plus algebra. We identify the nonlinear operations of erosion and dilation as linear convolutions in the latter algebras. The logarithmic Laplace transform makes a natural appearance as it corresponds to the conjugacy operation in the max-plus algebra. Its conjugate is given by the so-called Cramer transform. Originating from stochastics, the Cramer transform maps Gaussians to quadratic functions and relates standard convolution to erosion. This fundamental transform relies on the logarithm and constitutes the direct link between linear and morphological system theory. Many numerical examples are presented that illustrate the convexifying and smoothing properties of the Cramer transform.

Keywords

linear system theory morphology convex analysis max-plus algebra min-plus algebra slope transform Cramer transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akian, M., Quadrat, J.-P., and Viot, M. 1994. Bellman processes. In ICAOS ′94: Discrete Event Systems, volume 199 of Lecture Notes in Control and Information Sciences, Springer, London, pp. 302–311.Google Scholar
  2. Alvarez, L., Guichard, F., Lions, P.-L., and Morel, J.-M. 1993. Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis, 123:199–257.CrossRefGoogle Scholar
  3. Azencott, R., Guivarc’h, Y., Gundy, R.F., and Hennequin, P.L. 1980. (eds.) Ecole d’Ete de Probalites de Saint-Flour VIII-1978, volume 774 of Lecture Notes in Mathematics. Springer: Berlin.Google Scholar
  4. Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.-P. 1992. Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester, www-rocq.inria.fr/scilab/cohen/SED/SED1-book.htmlGoogle Scholar
  5. Bauer, H. 1990. Maß-und Integrationstheorie. Walter de Gruyter, Berlin.Google Scholar
  6. Borwein, J.M. and Lewis, A.S. 1999. Convex Analysis and Nonlinear Optimization. Springer: New York.Google Scholar
  7. Burgeth, B. and Weickert, J. 2003. An explanation for the logarithmic connection between linear and morphological systems. In L.D. Griffin and M. Lillholm, (Eds.), Scale-Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, Springer, Berlin, pp. 325–339.Google Scholar
  8. Castleman, K.R. 1996. Digital Image Processing. Prentice Hall: Englewood Cliffs.Google Scholar
  9. Deuschel, J.-D. and Stroock, D.W. 1989. Large Deviations. Academic Press: Boston.Google Scholar
  10. Dorst, L. and van den Boomgaard, R. 1994. Morphological signal processing and the slope transform. Signal Processing, 38:79–98.CrossRefGoogle Scholar
  11. Ellis, R.S. 1985. Entropy, Large Deviations, and Statistical Mechanics, volume 271 of Grundlehren der Mathematischen Wissenschaften. Springer: New York.Google Scholar
  12. Florack, L. 1997. Image Structure, volume 10 of Computational Imaging and Vision. Kluwer: Dordrecht.Google Scholar
  13. Florack, L. 2001. Non-linear scale-spaces isomorphic to the linear case with applications to scalar, vector and multispectral images. Journal of Mathematical Imaging and Vision, 15(1/2):39–53, 2001. Also: International Journal of Computer Vision, 42(1/2):39–53, 2001.Google Scholar
  14. Florack, L.M.J., Maas, R., and Niessen, W.J. 1999. Pseudo-linear scale-space theory. International Journal of Computer Vision, 31(2/3):247–259.CrossRefGoogle Scholar
  15. Gonzalez, R.C. and Woods, R.E. 2002. Digital Image Processing. 2nd edition. Addison–Wesley, Reading.Google Scholar
  16. Hamming, R.W. 1998. Digital Filters. Dover: New York.Google Scholar
  17. Heijmans, H.J.A.M. 1994. Morphological Image Operators. Academic Press: Boston.Google Scholar
  18. Heijmans, H.J.A.M. 2001. Scale-spaces, PDEs and scale-invariance. In M. Kerckhove, editor, Scale-Space and Morphology in Computer Vision, volume 2106 of Lecture Notes in Computer Science, Springer: Berlin, pp. 215–226.Google Scholar
  19. Heijmans, H.J.A.M. and van den Boomgaard, R. 2001. Algebraic framework for linear and morphological scale-spaces. Journal of Visual Communication and Image Representation, 13(1/2):269–301.CrossRefGoogle Scholar
  20. Hiriart-Urruty, J.-B. and Lemarechal, C. 2001. Fundamentals of Convex Analysis.Springer: Heidelberg.Google Scholar
  21. Iijima, T. 1959. Basic theory of pattern observation. In Papers of Technical Group on Automata and Automatic Control. December. IECE, Japan In, Japanese.Google Scholar
  22. Iijima, T. 1973. Pattern Recognition. Corona Publishing, Tokyo, In Japanese.Google Scholar
  23. Jackway, P.T. 1996. Gradient watersheds in morphological scale-space. IEEE Transactions on Image Processing, 5:913–921.CrossRefGoogle Scholar
  24. Jackway, P.T. and Deriche, M. 1996. Scale-space properties of the multiscale morphological dilation–erosion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:38–51.CrossRefGoogle Scholar
  25. Lindeberg, T. 1994. Scale-Space Theory in Computer Vision. Kluwer: Boston.Google Scholar
  26. Maragos, P. 1994. Morphological systems: Slope transforms and max-min difference and differential equations.Signal Processing, 38(1):57–77.CrossRefGoogle Scholar
  27. Maragos, P. 1996. Differential morphology and image processing. IEEE Transactions on Image Processing, 5(6):922–937.CrossRefGoogle Scholar
  28. Maragos, P. and Schafer, R.W. 1990. Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78(4):690–710.Google Scholar
  29. Oberhettinger, F. and Badii, L. 1973. Tables of Laplace Transforms. Springer: Berlin.Google Scholar
  30. Oppenheim, A.V. Schafer, R.W., and Buck, J.R. 1999. Discrete-Time Signal Processing. 2nd edition, Prentice Hall, Englewood Cliffs.Google Scholar
  31. Rockafellar, R.T. 1970. Convex Analysis. Princeton University Press: Princeton.Google Scholar
  32. Schavemaker, J.G.M., Reinders, M.J.T., Gerbrands, J.J., and Backer, E. 2000. Image sharpening by morphological filtering. Pattern Recognition, 33:997–1012.CrossRefGoogle Scholar
  33. Serra, J. 1982. Image Analysis and Mathematical Morphology, volume 1. Academic Press: London.Google Scholar
  34. Serra, J. 1988. Image Analysis and Mathematical Morphology, volume 2. Academic Press: London.Google Scholar
  35. Soille, P. 1999. Morphological Image Analysis. Springer: Berlin.Google Scholar
  36. Sporring, J., Nielsen, M., Florack, L., and Johansen, P. 1997. (Eds.) Gaussian Scale-Space Theory, volume 8 of Computational Imaging and Vision. Kluwer: Dordrecht.Google Scholar
  37. van den Boomgaard, R. 1992. The morphological equivalent of the Gauss convolution. Nieuw Archief Voor Wiskunde, 10(3):219–236.Google Scholar
  38. Weickert, J., Ishikawa, S., and Imiya, A. 1999. Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10(3):237–252.CrossRefGoogle Scholar
  39. Welk, M. 2003. Families of generalised morphological scale spaces. In L.D. Griffin and M. Lillholm, editors, Scale Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, Springer: Berlin, pp. 770–784.Google Scholar
  40. Witkin, A.P. 1983. Scale-space filtering. In Proc. Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, August volume 2, pp. 945–951.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations