Advertisement

Virus Genes

pp 1–5 | Cite as

Development of a colloidal gold-based immunochromatographic strip test using two monoclonal antibodies to detect H7N9 avian influenza virus

  • Fan Yang
  • Yixin Xiao
  • Bin Chen
  • Liyan Wang
  • Fumin Liu
  • Hangping Yao
  • Nanping Wu
  • Haibo WuEmail author
Short Report
  • 22 Downloads

Abstract

H7N9 low pathogenic avian influenza viruses (AIVs) emerged in China in 2013 and mutated into highly pathogenic strains in 2017, causing disease in infected birds and humans. Thus, the development of rapid, specific, and sensitive detection methods is urgently required. Herein, two specific monoclonal antibodies against H7N9 AIV were produced to develop a colloidal gold-based immunochromatographic test strip to detect H7N9 AIV. High specificity, repeatability, and sensitivity were achieved, with a detection limit of two hemagglutinin units or 102.55 50% tissue culture infective dose. This assay may represent a powerful tool to rapidly detect H7N9 influenza viruses in the future.

Keywords

Avian influenza virus H7N9 Detection Colloidal gold Monoclonal antibody 

Notes

Funding

This study was funded by Grants from the National Science Foundation of the People’s Republic of China (81502852), the National Science and Technology Major Project for the Control and Prevention of Major Infectious Diseases in China (2018ZX10711001, 2018ZX10102001 and 2020ZX09001016-004-002), Zhejiang Provincial Natural Science Foundation of China (LY19H260006), and the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (2019ZZ17).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal experiment was approved by the Institutional Animal Care Use Committee (IACUC) of Zhejiang University (No. 2017-015).

Supplementary material

11262_2020_1742_MOESM1_ESM.docx (14 kb)
Supplementary file1 (DOCX 14 kb)
11262_2020_1742_MOESM2_ESM.tif (503 kb)
Fig S1. A schematic diagram of the immunochromatographic strip. The strip consists of three regions: 1) a sample placement region; 2) a reagent pad region; and 3) a result region. The reagent pad contains Platinum-gold-colloid conjugated MAb 2D5. The result region contains nitrocellulose membrane-immobilized mAb 2F5 and anti-mouse polyclonal antibodies, which serve as the capture antibodies in the H7-positive and control lines, respectively. (TIF 503 kb)
11262_2020_1742_MOESM3_ESM.png (186 kb)
Fig S2. The location of escape residue displayed on the crystal structure of the H7 trimer from A/Shanghai/02/2013 (PDB: 4NL6). The two amino acid residues recognized by the mAb 2D5 (G131E) and 2F5 (E124L) are highlighted in red and purple, respectively. Compared the HA gene of A/chicken/Zhejiang/DTID-ZJU01/2013(H7N9) with the A/Shanghai/02/2013(H7N9), the sequences of these two viruses are highly similar (>99.99%). The epitopes of 2D5 and 2F5 were showed on a space-filling model of the trimeric membrane-distal globular head of A/Shanghai/02/2013(H7N9). (PNG 185 kb)

References

  1. 1.
    Hai-bo W, Ru-feng L, En-kang W, Jin-biao Y, Yi-ting W, Qiao-gang W, Li-hua X, Nan-ping W, Chao-tan G (2012) Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in China in 2011. Arch Virol 157(10):2017–2021.  https://doi.org/10.1007/s00705-012-1370-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Belser JA, Bridges CB, Katz JM, Tumpey TM (2009) Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis 15(6):859–865.  https://doi.org/10.3201/eid1506.090072 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen Y, Liang WF, Yang SG, Wu NP, Gao HN, Sheng JF, Yao HP, Wo JN, Fang Q, Cui DW, Li YC, Yao X, Zhang YT, Wu HB, Zheng SF, Diao HY, Xia SC, Zhang YJ, Chan KH, Tsoi HW, Teng JLL, Song WJ, Wang P, Lau SY, Zheng M, Chan JFW, To KKW, Chen HL, Li LJ, Yuen KY (2013) Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 381(9881):1916–1925.  https://doi.org/10.1016/S0140-6736(13)60903-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Yu DS, Xiang GF, Zhu WF, Lei X, Li BD, Meng Y, Yang L, Jiao HY, Li XY, Huang WJ, Wei HJ, Zhang YP, Hai Y, Zhang H, Yue H, Zou SM, Zhao X, Li C, Ao D, Zhang Y, Tan MJ, Liu J, Zhang XM, Gao GF, Meng L, Wang DY (2019) The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019. Eurosurveillance 24(21):13–21.  https://doi.org/10.2807/1560-7917.Es.2019.24.21.1900273 CrossRefGoogle Scholar
  5. 5.
    Sun X, Belser JA, Pappas C, Pulit-Penaloza JA, Brock N, Zeng H, Creager HM, Le S, Wilson M, Lewis A, Stark TJ, Shieh WJ, Barnes J, Tumpey TM, Maines TR (2018) Risk assessment of fifth-wave H7N9 influenza A viruses in mammalian models. J Virol.  https://doi.org/10.1128/JVI.01740-18 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang FC, Bi YH, Wang J, Wong G, Shi WF, Hu FY, Yang Y, Yang LQ, Deng XL, Jiang SF, He X, Liu YX, Yin CB, Zhong NS, Gao GF (2017) Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect 75(1):71–74.  https://doi.org/10.1016/j.jinf.2017.04.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Shi JZ, Deng GH, Ma SJ, Zeng XY, Yin X, Li M, Zhang B, Cui PF, Chen Y, Yang HL, Wan XP, Liu LL, Chen PC, Jiang YP, Guan YT, Liu JX, Gu WL, Han SY, Song YM, Liang LB, Qu ZY, Hou YJ, Wang XR, Bao HM, Tian GB, Li YB, Jiang L, Li CJ, Chen HL (2018) Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host Microbe 24(4):558–568.  https://doi.org/10.1016/j.chom.2018.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vemula SV, Zhao J, Liu J, Wang X, Biswas S, Hewlett I (2016) Current approaches for diagnosis of influenza virus infections in humans. Viruses 8(4):96.  https://doi.org/10.3390/v8040096 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang F, Chen B, Liu F, Peng X, Sun T, Yao H, Wu H, Wu N (2018) Development of a TaqMan MGB RT-PCR assay for the detection of type A and subtype H10 avian influenza viruses. Arch Virol 164(1):159–179.  https://doi.org/10.1007/s00705-018-3889-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Yang F, Wu H, Liu F, Lu X, Peng X, Wu N (2018) Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses. Arch Virol 163(9):2497–2501.  https://doi.org/10.1007/s00705-018-3773-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Stephenson I, Heath A, Major D, Newman RW, Hoschler K, Junzi W, Katz JM, Weir JP, Zambon MC, Wood JM (2009) Reproducibility of serologic assays for influenza virus A (H5N1). Emerg Infect Dis 15(8):1250–1259.  https://doi.org/10.3201/eid1508.081754 CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Krittanai S, Kitisripanya T, Udomsin O, Tanaka H, Sakamoto S, Juengwatanatrakul T, Putalun W (2018) Development of a colloidal gold nanoparticle-based immunochromatographic strip for the one-step detection of miroestrol and puerarin. Biomed Chromatogr BMC 32(11):e4330.  https://doi.org/10.1002/bmc.4330 CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshida R, Igarashi M, Ozaki H, Kishida N, Tomabechi D, Kida H, Ito K, Takada A (2009) Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog 5(3):e1000350.  https://doi.org/10.1371/journal.ppat.1000350 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu XX, Deng XL, Yu DS, Yao W, Qu HL, Weng TH, Hu CY, Hu FY, Wu NP, Yao HP, Zhang FC, Li LJ (2018) The protective effects of the A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine against highly pathogenic H7N9 in BALB/c mice. Cell Physiol Biochem 46(2):633–643.  https://doi.org/10.1159/000488631 CrossRefPubMedGoogle Scholar
  15. 15.
    Ou HL, Yao HP, Yao W, Wu NP, Wu XX, Han CC, Cheng LF, Chen KD, Chen HL, Li LJ (2016) Analysis of the immunogenicity and bioactivities of a split influenza A/H7N9 vaccine mixed with MF59 adjuvant in BALB/c mice. Vaccine 34(20):2362–2370.  https://doi.org/10.1016/j.vaccine.2016.03.037 CrossRefPubMedGoogle Scholar
  16. 16.
    Oh HL, Akerstrom S, Shen S, Bereczky S, Karlberg H, Klingstrom J, Lal SK, Mirazimi A, Tan YJ (2010) An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses. J Virol 84(16):8275–8286.  https://doi.org/10.1128/JVI.02593-09 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Benjamin E, Wang WJ, McAuliffe JM, Palmer-Hill FJ, Kallewaard NL, Chen ZY, Suzich JA, Blair WS, Jin H, Zhu Q (2014) A broadly neutralizing human monoclonal antibody directed against a novel conserved epitope on the influenza virus H3 hemagglutinin globular head. J Virol 88(12):6743–6750.  https://doi.org/10.1128/Jvi.03562-13 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu G, Yu X, Yang G, Tang Y, Diao Y (2018) A novel diagnostic method to detect duck tembusu virus: a colloidal gold-based immunochromatographic assay. Front Microbiol 9:1001.  https://doi.org/10.3389/fmicb.2018.01001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chan KW, Lo C, Chu CS, Chin LT, Wang YT, Yang WC (2016) Development of a colloidal gold-based immunochromatographic test strip for detection of cetacean myoglobin. J Vis Exp.  https://doi.org/10.3791/53433 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang F, Feng S, Li Y, He Y, Jin X, Wang X, Zhou Z, Xiao Y, Bi D (2018) Development of immunochromatographic test strips for rapid, quantitative detection of H9AIV antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 1095:59–64.  https://doi.org/10.1016/j.jchromb.2018.07.024 CrossRefPubMedGoogle Scholar
  21. 21.
    Wu X, Wang Y, Weng T, Hu C, Wang FXC, Wu Z, Yu D, Lu H, Yao H (2017) Preparation of immunochromatographic strips for rapid detection of early secreted protein ESAT-6 and culture filtrate protein CFP-10 from Mycobacterium tuberculosis. Medicine 96(51):e9350.  https://doi.org/10.1097/MD.0000000000009350 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, Xie T, Yao H, Wu N (2014) Novel reassortant influenza A(H5N8) viruses in domestic ducks, eastern China. Emerg Infect Dis 20(8):1315–1318.  https://doi.org/10.3201/eid2008.140339 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wu H, Wu N, Peng X, Jin C, Lu X, Cheng L, Yao H, Li L (2014) Molecular characterization and phylogenetic analysis of H3 subtype avian influenza viruses isolated from domestic ducks in Zhejiang Province in China. Virus Genes 49(1):80–88.  https://doi.org/10.1007/s11262-014-1065-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Iwatsuki-Horimoto K, Shi J, Wang X, Sakai-Tagawa Y, Ito M, Murakami K, da Silva Lopes TJ, Nakaishi K, Yamayoshi S, Watabe S, Chen H, Kawaoka Y (2018) Development of an influenza rapid diagnostic kit specific for the H7 subtype. Front Microbiol 9:1346.  https://doi.org/10.3389/fmicb.2018.01346 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ding CC, Li JW, Liu X, Liu Q (2018) Development of colloidal gold-based immunochromatographic strip test using two monoclonal antibodies for detection of Vibrio parahaemolyticus. J Food Safety.  https://doi.org/10.1111/jfs.12468 CrossRefGoogle Scholar
  26. 26.
    Wu HB, Lu RF, Peng XM, Peng XR, Cheng LF, Jin CZ, Lu XY, Xie TS, Yao HP, Wu NP (2016) Isolation and genetic characterization of novel reassortant H6N6 subtype avian influenza viruses isolated from chickens in eastern China. Arch Virol 161(7):1859–1872.  https://doi.org/10.1007/s00705-016-2861-4 CrossRefPubMedGoogle Scholar
  27. 27.
    Wu HB, Guo CT, Lu RF, Xu LH, Wo EK, You JB, Wang YT, Wang QG, Wu NP (2012) Genetic characterization of subtype H1 avian influenza viruses isolated from live poultry markets in Zhejiang Province, China, in 2011. Virus Genes 44(3):441–449.  https://doi.org/10.1007/s11262-012-0716-y CrossRefPubMedGoogle Scholar
  28. 28.
    Wang XX, Liu SL, Mao HY, Yu Z, Chen EF, Chai CL (2015) Surveillance of avian H7N9 virus in various environments of Zhejiang Province, China before and after live poultry markets were closed in 2013–2014. PLoS ONE.  https://doi.org/10.1371/journal.pone.0135718 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xiang NJ, Li XY, Ren RQ, Wang DY, Zhou SZ, Greene CM, Song Y, Zhou L, Yang L, Davis CT, Zhang Y, Wang YL, Zhao J, Li XD, Iuliano AD, Havers F, Olsen SJ, Uyeki TM, Azziz-Baumgartner E, Trock S, Liu B, Sui HT, Huang X, Zhang YP, Ni DX, Feng ZJ, Shu YL, Li Q (2016) Assessing change in avian influenza A (H7N9) virus infections during the fourth epidemic—China, September 2015-August 2016. MMWR Morb Mortal Wkly Rep 65(49):1390–1394.  https://doi.org/10.15585/Mmwr.Mm6549a2 CrossRefPubMedGoogle Scholar
  30. 30.
    Cui S, Chen C, Tong G (2008) A simple and rapid immunochromatographic strip test for monitoring antibodies to H5 subtype avian influenza virus. J Virol Methods 152(1–2):102–105.  https://doi.org/10.1016/j.jviromet.2008.06.011 CrossRefPubMedGoogle Scholar
  31. 31.
    Peng F, Wang Z, Zhang S, Wu R, Hu S, Li Z, Wang X, Bi D (2008) Development of an immunochromatographic strip for rapid detection of H9 subtype avian influenza viruses. Clin Vaccine Immunol 15(3):569–574.  https://doi.org/10.1128/CVI.00273-07 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sun J, Lei X, Wang W, Liu Y, Liang P, Bao H, Wang Q, Guo Y, Yang J, Yan Z (2013) Development and evaluation of a paramagnetic nanoparticle based immunochromatographic strip for specific detection of 2009 H1N1 influenza virus. J Nanosci Nanotechnol 13(3):1684–1690CrossRefGoogle Scholar
  33. 33.
    Sun ZH, Shi BL, Meng FF, Ma RN, Hu QY, Qin T, Chen SJ, Peng DX, Liu XF (2018) Development of a colloidal gold-based immunochromatographic strip for rapid detection of H7N9 influenza viruses. Front Microbiol 9:2069.  https://doi.org/10.3389/Fmicb.2018.02069 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations