Advertisement

Virus Genes

, Volume 55, Issue 5, pp 563–573 | Cite as

Evolutionary forces at work in partitiviruses

  • Karel PetrzikEmail author
Review Paper

Abstract

The family Partitiviridae consists of dsRNA viruses with genome separated into two segments and encoding replicase and capsid protein only. We examined the nucleotide diversity expressed as the ratio dN/dS of nonsynonymous and synonymous substitutions, which has been calculated for 12 representative viruses of all five genera of partitiviruses. We can state that strong purifying selection works on both the RdRp and CP genes and propose that putative positive selection occurs also on the RdRp genes in two viruses. Among the 95 evaluated viruses, wherein both segments had been sequenced, 8 viruses in betapartitiviruses and 9 in alphapartitiviruses were identified as reassortment candidates because they differ extremely in their CP identity even as they are related in terms of RdRp. Furthermore, there are indications that reassortants are present among isolates of different viruses.

Keywords

Capsid protein Negative/positive selection Reassortment RNA polymerase Symbiosis 

Notes

Acknowledgements

This work has been funded by institutional support RVO60077344 and Grant MEMOBiC of the Ministry of Education, Youth and Sports of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Ethical approval

This article does not contain any experiments with human participants or animals and is in compliance with ethical standards for research.

Supplementary material

11262_2019_1680_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 55 kb)
11262_2019_1680_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 23 kb)

References

  1. 1.
    Chiba S, Lin Y-H, Kondo H, Kanematsu S, Suzuki N (2013) Effect of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. J Virol 87:2330–2341CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N (2014) Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–141CrossRefGoogle Scholar
  3. 3.
    Luque D, Mata CP, Suzuki N, Ghabrial SA, Castón JR (2018) Capsid structure of dsRNA fungal viruses. Viruses 10(9):481CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D (2012) Discovery of novel dsRNA viral sequences by in silico cloning and implication for viral diversity, host range and evolution. PLoS ONE 7:e42147CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nerva L, Varese GC, Falk BW, Turina M (2017) Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Sci Rep 7(1):1908CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu H, Fu Y, Jiang D, Li G, Xie J, Cheng J, Peng Y, Ghabrial SA, Yi X (2010) Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J Virol 84:11876–11887CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, Kanematsu S, Suzuki N (2011) Widespread endogenization of genome sequences of nonretroviral RNA viruses into plant genomes. PLoS Pathog 7(7):e1002146CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Phan TG, Valle Mendoza J, Sadeghi M, Altan E, Deng X, Delwart E (2018) Sera of Peruvians with fever of unknown origins include viral nucleic acids from non-vertebrate hosts. Virus Genes 54:33–40CrossRefPubMedGoogle Scholar
  9. 9.
    Xiao X, Cheng J, Tang J, Fu Y, Jiang D, Baker TS, Ghabrial SA, Xie J (2014) A novel partitivirus that confers hypovirulence on plant pathogenic fungi. J Virol 88:10120–10133CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J (2010) A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol 114:955–965CrossRefPubMedGoogle Scholar
  11. 11.
    Zheng L, Zhang M, Chen Q, Zhu M, Zhou E (2014) A novel mycovirus closely related to viruses in the genus Alphapartitivirus confers hypovirulence in the phytopathogenic fungus Rhizoctonia solani. Virology 456–457:220–226CrossRefPubMedGoogle Scholar
  12. 12.
    Chiba S, Lin Y-H, Kondo H, Kanematsu S, Suzuki N (2015) A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. Virus Res 219:62–72CrossRefPubMedGoogle Scholar
  13. 13.
    Bhatti MF, Jamal A, Petrou MA, Cairns TC, Bignell EM, Coutts RHA (2011) The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol 48:1071–1075CrossRefPubMedGoogle Scholar
  14. 14.
    Lau SKP, Lo GCS, Chow FWN, RYY Fan, Cai JJ, Yuen KY, Woo PCY (2018) Novel partitivirus enhances virulence of and causes aberrant gene expression in Talaromyces marneffei. mBio 9:e00947–18CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Petrzik K, Koloniuk I, Sarkisova T, Hrabáková L (2016) Detection and genome sequence of a new betapartitivirus associated with Cucurbitaria piceae Bortw. fungus causing bud blight of spruce in the Czech Republic. Arch Virol 161:1405–1409CrossRefPubMedGoogle Scholar
  16. 16.
    Murakoshi F, Ichikawa-Seki M, Aita J, Yaita S, Kinami A, Fujimoto K, Nishikawa Y, Murakami S, Horimoto T, Kato K (2016) molecular epidemiological analyses of Cryptosporidium parvum virus 1 (CSpV1), a symbiotic virus of Cryptosporidium parvum, in Japan. Virus Res 211:69–72CrossRefPubMedGoogle Scholar
  17. 17.
    Guo M, Bian Y, Wang J, Wang G, Ma X, Xu Z (2017) Biological and molecular characteristics of a novel partitivirus infecting the edible fungus Lentinula edodes. Plant Dis 1001:726–733CrossRefGoogle Scholar
  18. 18.
    Kanematsu S, Sasaki A, Onoue M, Oikawa Y, Ito T (2010) Extending the fungal host range of a partitivirus and mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles. Phytopathology 100:922–930CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang Y, Zhang T, Luo C, Jiang D, Li G, Li Q, Hsiang T, Huang J (2015) Prevalence and diversity of mycoviruses infecting the plant pathogen Ustilaginoidea virens. Virus Res 195:47–56CrossRefPubMedGoogle Scholar
  20. 20.
    Thapa V, Turner GG, Hafenstein S, Overton BE, Vanderwolf KJ, Roossinck MJ (2016) Using a novel partitivirus in Pseudogymnoascus destructans to understand the epidemiology of white-nose syndrome. PLoS Pathog 12(12):e1006076CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ong JWL, Li H, Sivasithamparam K, Dixon KW, Jones MGK, Wylie SJ (2017) The challenges of using high-throughput sequencing to track multiple bipartite mycoviruses of wild orchid-fungus partnerships over consecutive years. Virology 510:297–304CrossRefPubMedGoogle Scholar
  22. 22.
    Botella L, Vainio EJ, Hantula J, Diez JJ, Jankovsky L (2015) Description and prevalence of a putative novel mycovirus within the conifer pathogen Gremmeniella abietina. Arch Virol 160:1967–1975CrossRefPubMedGoogle Scholar
  23. 23.
    Oshima K, Matsumoto K, Yasaka R, Nishiyama M, Soejima K, Korkmaz S, Ho SYW, Gibbs AJ, Takeshita M (2016) Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: extra clues from its segment genome. Virology 487:188–197CrossRefGoogle Scholar
  24. 24.
    Desbiez C, Moury B, Lecoq H (2011) The hallmarks of “green” viruses: do plant viruses evolve differently from the others? Infect Genet Evol 11:812–824CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang CQ, Gu HC, Ghabrial SA (2007) Molecular characterization of naturally occurring RNA1 recombinants of the Comovirus Bean pod mottle virus. Phytopathology 97:1255–1262CrossRefPubMedGoogle Scholar
  26. 26.
    Hu J-M, Fu H-C, Lin C-H, Su H-J, Yeh H-H (2007) Reassortment and concerted evolution in Banana bunchy top virus genomes. J Virol 81(4):1746–1761CrossRefPubMedGoogle Scholar
  27. 27.
    Eusebio-Cope A, Sun L, Hillman BI, Suzuki N (2010) Mycoreovirus 1 S4-coded protein is dispensable for viral replication but necessary for efficient vertical transmission and normal symptom induction. Virology 397:399–408CrossRefPubMedGoogle Scholar
  28. 28.
    Osaki H, Nomura K, Matsumoto N, Ohtsu Y (2004) Characterization of double-stranded RNA elements in the violet root rot fungus Helicobasidium mompa. Mycol Res 108:635–640CrossRefPubMedGoogle Scholar
  29. 29.
    Kim JW, Kim SY, Kim KM (2003) Genome organization and expression of the Penicillium stoloniferum virus S. Virus Genes 27:249–256CrossRefPubMedGoogle Scholar
  30. 30.
    Kim JW, Choi EY, Lee JI (2005) Genome organization and expression of the Penicillium stoloniferum virus F. Virus Genes 31:175–183CrossRefPubMedGoogle Scholar
  31. 31.
    Hrabáková L, Grum-Grzhimaylo AA, Koloniuk I, Debets A, Sarkisova T, Petrzik K (2017) The alkalophilic fungus Sodiomyces alkalinus hosts beta- and gammapartitiviruses together with a new fusarivirus. PLoS ONE 12(11):e0187799CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vainio EJ, Capretti P, Motta E, Hantula J (2013) Molecular characterization of HetRV8-ir1, a partitivirus of the invasive conifer pathogenic fungus Heterobasidion irregulare. Arch Virol 158:1613–1615CrossRefPubMedGoogle Scholar
  33. 33.
    Vainio EJ, Müller MM, Korhonen K, Piri T, Hantula J (2015) Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J 9:497–507CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  35. 35.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  37. 37.
    Feau N, Dutech C, Brusini J, Rigling D, Robin C (2014) Multiple introductions and recombination in Cryphonectria hypovirus 1: perspective for a sustainable biological control of chestnut blight. Evol Appl 7:580–596CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McCauley JW, Hongo S, Kaverin NV, Kochs G, Lamb RA, Matrosovich MN, Perez DR, Palese P, Presti RM, Rimstad E, Smith GJD (2012) Orthomyxoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy, Ninth report of the International committee on taxonomy of viruses. Elsevier, Amsterdam, pp 749–761Google Scholar
  39. 39.
    Kashif M, Hyder R, De Vega Perez D, Hantula J, Vainio EJ (2015) Heterobasidion wood decay fungi host diverse and globally distributed viruses related to Helicobasidium mompa partitivirus V70. Virus Res 195:119–123CrossRefPubMedGoogle Scholar
  40. 40.
    Lesker T, Maiss E (2013) In planta protein interactions of three alphacryptoviruses and three betacryptoviruses from white clover, red clover and dill by bimolecular fluorescence complementation analysis. Viruses 5:2512–2530CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lesker T, Rabenstein F, Maiss E (2013) Molecular characterization of five betacryptoviruses infecting four clover species and dill. Arch Virol 158:1943–1952CrossRefPubMedGoogle Scholar
  42. 42.
    Tang J, Pan J, Havens WM, Ochoa WF, Guu TSY, Ghabrial SA, Nibert ML, Tao YJ, Baker TS (2010) Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. Biophys J 99:685–694CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Villa M, Lassig M (2017) Fitness cost of reassortment in human influenza. PLoS Pathog 13:e1006685CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Virology, Institute of Plant Molecular BiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic

Personalised recommendations