Advertisement

Virus Genes

, Volume 55, Issue 4, pp 550–556 | Cite as

Development of a reverse genetics system for Japanese encephalitis virus strain SA14-14-2

  • Guohua Li
  • Hongli Jin
  • Xin Nie
  • Yongkun Zhao
  • Na Feng
  • Zongxi Cao
  • Shuyi Tan
  • Bo Zhang
  • Weiwei Gai
  • Feihu Yan
  • Ling Li
  • Ying Zhang
  • Zengguo Cao
  • Nan Li
  • Yuwei Gao
  • Songtao Yang
  • Xianzhu XiaEmail author
  • Hualei WangEmail author
Short Report

Abstract

Japanese encephalitis virus SA14-14-2 (JEV SA14-14-2) is a widely used vaccine in China and other southeastern countries to prevent Japanese encephalitis in children. In this study, a stable infectious cDNA clone of JEV SA14-14-2 with a low copy number pACYC177 vector dependent on the T7 promoter and T7 terminator was developed. Two introns were inserted into the capsid gene and envelope gene of JEV cDNA for gene stability. Hepatitis delta virus ribozyme (HDVr) was engineered into the 3′ UTR cDNA of JEV for authentic 3′ UTR transcription. The rescued virus showed biological properties indistinguishable from those of the parent strain (JEV SA14-14-2). The establishment of a JEV SA14-14-2 reverse genetics system lays the foundation for the further development of other flavivirus vaccines and viral pathogenesis studies.

Keywords

Japanese encephalitis virus Infectious clone Intron T7 terminator 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFD0500400).

Author contributions

XX, HW, YG, SY, and BZ conceived and designed the experiments. GL, HJ, XN, YZ, NF, ZC, ST, WG, FY, LL, YZ, ZC, and NL performed the experiments and provided experiments materials or ideas.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

11262_2019_1674_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. 1.
    Yun SI, Lee YM (2014) Japanese encephalitis: the virus and vaccines. Hum Vaccines Immunother 10(2):263–279.  https://doi.org/10.4161/hv.26902 CrossRefGoogle Scholar
  2. 2.
    Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(10):766–774.  https://doi.org/10.2471/blt.10.085233 CrossRefGoogle Scholar
  3. 3.
    Rosen L (1986) The natural history of Japanese encephalitis virus. Annu Rev Microbiol 40:395–414.  https://doi.org/10.1146/annurev.mi.40.100186.002143 CrossRefGoogle Scholar
  4. 4.
    Knipe David M, Howley Peter M (2013) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 718–723Google Scholar
  5. 5.
    Yu Y (2013) Development of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and its characteristics. In: Tkachev S (ed) encephalitis. Open Access: InTech, London, pp 181–206Google Scholar
  6. 6.
    Sumiyoshi H, Hoke CH, Trent DW (1992) Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol 66(9):5425–5431Google Scholar
  7. 7.
    Yun SI, Kim SY, Rice CM, Lee YM (2003) Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77(11):6450–6465CrossRefGoogle Scholar
  8. 8.
    Wang HJ, Li XF, Ye Q, Li SH, Deng YQ, Zhao H, Xu YP, Ma J, Qin ED, Qin CF (2014) Recombinant chimeric Japanese encephalitis virus/tick-borne encephalitis virus is attenuated and protective in mice. Vaccine 32(8):949–956.  https://doi.org/10.1016/j.vaccine.2013.12.050 CrossRefGoogle Scholar
  9. 9.
    Li XF, Dong HL, Wang HJ, Huang XY, Qiu YF, Ji X, Ye Q, Li C, Liu Y, Deng YQ, Jiang T, Cheng G, Zhang FC, Davidson AD, Song YJ, Shi PY, Qin CF (2018) Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat Commun 9(1):673.  https://doi.org/10.1038/s41467-018-02975-w CrossRefGoogle Scholar
  10. 10.
    Zhang F, Huang Q, Ma W, Jiang S, Fan Y, Zhang H (2001) Amplification and cloning of the full-length genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. J Virol Methods 96(2):171–182CrossRefGoogle Scholar
  11. 11.
    Zhao Z (2005) Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 86(8):2209–2220.  https://doi.org/10.1099/vir.0.80638-0 CrossRefGoogle Scholar
  12. 12.
    Shi PY, Tilgner M, Lo MK, Kent KA, Bernard KA (2002) Infectious cDNA clone of the epidemic west nile virus from New York City. J Virol 76(12):5847–5856CrossRefGoogle Scholar
  13. 13.
    Shan C, Xie X, Muruato AE, Rossi SL, Roundy CM, Azar SR, Yang Y, Tesh RB, Bourne N, Barrett AD, Vasilakis N, Weaver SC, Shi PY (2016) An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe 19(6):891–900.  https://doi.org/10.1016/j.chom.2016.05.004 CrossRefGoogle Scholar
  14. 14.
    Yamshchikov V, Mishin V, Cominelli F (2001) A new strategy in design of +RNA virus infectious clones enabling their stable propagation in E. coli. Virology 281(2):272–280.  https://doi.org/10.1006/viro.2000.0793 CrossRefGoogle Scholar
  15. 15.
    Liang JJ, Liao CL, Liao JT, Lee YL, Lin YL (2009) A Japanese encephalitis virus vaccine candidate strain is attenuated by decreasing its interferon antagonistic ability. Vaccine 27(21):2746–2754.  https://doi.org/10.1016/j.vaccine.2009.03.007 CrossRefGoogle Scholar
  16. 16.
    Mishin VP, Cominelli F, Yamshchikov VF (2001) A ‘minimal’ approach in design of flavivirus infectious DNA. Virus Res 81(1–2):113–123CrossRefGoogle Scholar
  17. 17.
    Jiang X, Dalebout TJ, Lukashevich IS, Bredenbeek PJ, Franco D (2015) Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone. J Gen Virol 96(Pt 4):804–814.  https://doi.org/10.1099/jgv.0.000026 CrossRefGoogle Scholar
  18. 18.
    Tsetsarkin KA, Kenney H, Chen R, Liu G, Manukyan H, Whitehead SS, Laassri M, Chumakov K, Pletnev AG (2016) A full-length infectious cDNA clone of Zika virus from the 2015 epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development. mBio.  https://doi.org/10.1128/mbio.01114-16 Google Scholar
  19. 19.
    Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: bRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259Google Scholar
  20. 20.
    Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned cDNA. J Virol Methods 107(2):229–236CrossRefGoogle Scholar
  21. 21.
    Weaver Robert F (2012) Spliceosomes. Molecular biology, 5th edn. McGraw Hill, New York, pp 402–415Google Scholar
  22. 22.
    Wu X, Lin H, Chen S, Xiao L, Yang M, An W, Wang Y, Yao X, Yang Z (2017) Development and application of a reverse transcriptase droplet digital PCR (RT-ddPCR) for sensitive and rapid detection of Japanese encephalitis virus. J Virol Methods 248:166–171.  https://doi.org/10.1016/j.jviromet.2017.06.015 CrossRefGoogle Scholar
  23. 23.
    Goldsmith CS, Miller SE (2009) Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev 22(4):552–563.  https://doi.org/10.1128/CMR.00027-09 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guohua Li
    • 1
    • 2
  • Hongli Jin
    • 2
    • 3
  • Xin Nie
    • 8
  • Yongkun Zhao
    • 2
    • 7
  • Na Feng
    • 2
    • 7
  • Zongxi Cao
    • 4
  • Shuyi Tan
    • 4
  • Bo Zhang
    • 5
  • Weiwei Gai
    • 3
  • Feihu Yan
    • 2
  • Ling Li
    • 3
    • 6
  • Ying Zhang
    • 2
    • 9
  • Zengguo Cao
    • 2
    • 3
  • Nan Li
    • 2
  • Yuwei Gao
    • 2
    • 7
  • Songtao Yang
    • 2
    • 7
  • Xianzhu Xia
    • 1
    • 2
    • 7
    Email author
  • Hualei Wang
    • 2
    • 3
    Email author
  1. 1.College of Animal Science and TechnologyShihezi UniversityShiheziChina
  2. 2.Key Laboratory of Jilin Province for Zoonosis Prevention and ControlInstitute of Military Veterinary, Academy of Military Medical ScienceChangchunChina
  3. 3.Key laboratory of Zoonosis Research, Ministry of Education, College of Veterinary MedicineJilin UniversityChangchunChina
  4. 4.Hainan Academician Workstation, Institute of Animal Husbandry and Veterinary MedicineHainan Academy of Agricultural SciencesHaikouChina
  5. 5.Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of ScienceWuhanChina
  6. 6.National Research Center for Exotic Animal Disease, Animal Health and Epidemiology CenterQingdaoChina
  7. 7.Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
  8. 8.65316 Troops, Peoples’ Liberation ArmyWafangdianChina
  9. 9.College of Animal Science and TechnologyJilin Agricutural UniversityChangchunChina

Personalised recommendations