Skip to main content
Log in

R7A mutation in N protein renders temperature sensitive phenotype of VSV by affecting its replication and transcription in vitro

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Viral genomic RNA encapsidated by nucleoprotein (N) forms functional template for the transcription and replication of vesicular stomatitis virus (VSV). The crystal structure of the N-RNA complex shows that RNA is tightly sequestered between the two lobes of the N protein. The residue (R7) in N-terminal arm of N is of great importance to the formation of functional N-RNA template. In our study, we found that single amino acid substitution (R7A) resulted in the loss of CAT expression in vitro minigenome system at 37 °C. But the R7A had little effect on CAT expression at 31 °C. Further analysis showed that R7A had great effects on the RNA synthesis and the formation of cytoplasmic inclusions of VSV only at 37 °C not at 31 °C. For the further investigation of the effect of R7A on virus replication, we checked the dominant-negative effect of NR7A in minigenome system and the single step curve of recombinant virus with R7A mutation in N protein (rVSVR7A) under 37 °C and 31 °C separately. Our results showed that the mutation of R7A within the N-terminal arm of N affected both replication and transcription and induced VSV to become temperature sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23(2):477–484

    Article  CAS  PubMed  Google Scholar 

  2. Abraham G, Banerjee AK (1976) Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci USA 73(5):1504–1508

    Article  CAS  PubMed  Google Scholar 

  3. Ball LA, White CN (1976) Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci USA 73(2):442–446

    Article  CAS  PubMed  Google Scholar 

  4. Emerson SU, Wagner RR (1972) Dissociation and reconstitution of the transcriptase and template activities of vesicular stomatitis B and T virions. J Virol 10(2):297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mellon MG, Emerson SU (1978) Rebinding of transcriptase components (L and NS proteins) to the nucleocapsid template of vesicular stomatitis virus. J Virol 27(3):560–567

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morin B, Rahmeh AA, Whelan SP (2012) Mechanism of RNA synthesis initiation by the vesicular stomatitis virus polymerase. EMBO J 31(5):1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen L et al (2013) N-terminal phosphorylation of phosphoprotein of vesicular stomatitis virus is required for preventing nucleoprotein from binding to cellular RNAs and for functional template formation. J Virol 87(6):3177–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsu CH, Kingsbury DW, Murti KG (1979) Assembly of vesicular stomatitis virus nucleocapsids in vivo: a kinetic analysis. J Virol 32(1):304–313

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rubio C et al (1980) Replication and assembly of VSV nucleocapsids: protein association with RNPs and the effects of cycloheximide on replication. Virology 105(1):123–135

    Article  CAS  PubMed  Google Scholar 

  10. Masters PS, Banerjee AK (1988) Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to nonspecific RNA. J Virol 62(8):2658–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Das T et al (1999) Carboxy-terminal five amino acids of the nucleocapsid protein of vesicular stomatitis virus are required for encapsidation and replication of genome RNA. Virology 259(1):219–227

    Article  CAS  PubMed  Google Scholar 

  12. Barr J et al (1991) Sequence of the major nucleocapsid protein gene of pneumonia virus of mice: sequence comparisons suggest structural homology between nucleocapsid proteins of pneumoviruses, paramyxoviruses, rhabdoviruses and filoviruses. J Gen Virol 72(Pt 3):677–685

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X et al (2008) Role of intermolecular interactions of vesicular stomatitis virus nucleoprotein in RNA encapsidation. J Virol 82(2):674–682

    Article  CAS  PubMed  Google Scholar 

  14. Green TJ et al (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313(5785):357–360

    Article  CAS  PubMed  Google Scholar 

  15. Harouaka D, Wertz GW (2009) Mutations in the C-terminal loop of the nucleocapsid protein affect vesicular stomatitis virus RNA replication and transcription differentially. J Virol 83(22):11429–11439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L et al (2015) Several residues within the N-terminal arm of vesicular stomatitis virus nucleoprotein play a critical role in protecting viral RNA from nuclease digestion. Virology 478:9–17

    Article  CAS  PubMed  Google Scholar 

  17. Chen MZ, Ogino T, Banerjee AK (2006) Mapping and functional role of the self-association domain of vesicular stomatitis virus phosphoprotein. J Virol 80(19):9511–9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heinrich BS et al (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6(6):e1000958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chuang JL, Perrault J (1997) Initiation of vesicular stomatitis virus mutant polR1 transcription internally at the N gene in vitro. J Virol 71(2):1466–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Iseni F et al (2000) Structure of the RNA inside the vesicular stomatitis virus nucleocapsid. RNA 6(2):270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moyer SA et al (1991) Assembly and transcription of synthetic vesicular stomatitis virus nucleocapsids. J Virol 65(5):2170–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Harouaka D, Wertz GW (2012) Second-site mutations selected in transcriptional regulatory sequences compensate for engineered mutations in the vesicular stomatitis virus nucleocapsid protein. J Virol 86(20):11266–11275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen L et al (2016) Two second-site mutations compensate the engineered mutation of R7A in vesicular stomatitis virus nucleocapsid protein. Virus Res 214:59–64

    Article  CAS  PubMed  Google Scholar 

  24. Regules JA et al (2017) A recombinant vesicular stomatitis virus ebola vaccine. N Engl J Med 376(4):330–341

    Article  CAS  PubMed  Google Scholar 

  25. Geisbert TW et al (2008) Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine 26(52):6894–6900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huttner A et al (2015) The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infect Dis 15(10):1156–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao JB et al (2008) Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol 15(5):817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marzi A et al (2015) Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg Infect Dis 21(2):305–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mire CE et al (2015) Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus. Nature 520(7549):688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryder AB et al (2015) A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine. J Virol 89(5):2820–2830

    Article  CAS  PubMed  Google Scholar 

  31. Jayakar HR, Whitt MA (2002) Identification of two additional translation products from the matrix (M) gene that contribute to vesicular stomatitis virus cytopathology. J Virol 76(16):8011–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stojdl DF et al (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4(4):263–275

    Article  CAS  PubMed  Google Scholar 

  33. Tober R et al (2014) VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications. J Virol 88(9):4897–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu L et al (2008) rVSV(M Delta 51)-M3 is an effective and safe oncolytic virus for cancer therapy. Hum Gene Ther 19(6):635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Sciences Foundation of China (grant 31700152)

Author information

Authors and Affiliations

Authors

Contributions

LYC, YYZ and HMC conceived the study. LYC, YYZ, MZ and HMC participated in the conduct of the study. LYC and HMC drafted and reviewed the manuscript. All authors critically revised and approved the manuscript.

Corresponding author

Correspondence to Huimin Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Simon D. Scott.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhou, Y., Zhao, M. et al. R7A mutation in N protein renders temperature sensitive phenotype of VSV by affecting its replication and transcription in vitro. Virus Genes 55, 513–519 (2019). https://doi.org/10.1007/s11262-019-01671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01671-1

Keywords

Navigation