Virus Genes

pp 1–12 | Cite as

Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum

  • Liyuan Mi
  • Yannan Liu
  • Can Wang
  • Tongtong He
  • Shan Gao
  • Shaozhen Xing
  • Yong Huang
  • Hang Fan
  • Xianglilan Zhang
  • Wengong Yu
  • Zhiqiang Mi
  • Yigang Tong
  • Changqing BaiEmail author
  • Feng HanEmail author
Original Paper


Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.


Pseudomonas aeruginosa Bacteriophage Depolymerase Biofilm Exopolysaccharide 


Author contributions

MLY conducted the identification, expression, and evaluation of the depolymerase and drafted the manuscript. LYN screened and identified the Pa.1193 bacterium. WC performed the exopolysaccharide extraction and staining. GS performed the bacterial biofilm experiment. HTT isolated the IME180 phage. XSZ conducted the depolymerase purification. HY, FH, and ZXLL performed genomic analyses and annotation. TYG, YWG, and MZQ revised the manuscript. BCQ and HF conceived and designed the experiments. All authors read and approved the final manuscript.


This study was supported by the National Natural Science Foundation of China (81572045), the Capital Characteristic Clinic Project of Beijing (Z121107001012127), the Beijing Natural Science Foundation (7142118), and the National Key Research and Development Program of China (2017YFF0108605).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Research involving human participants and/or animals

All procedures involving animals were in accordance with ethical standards.


  1. 1.
    Berra L, Sampson J, Wiener-Kronish J (2010) Pseudomonas aeruginosa: acute lung injury or ventilator-associated pneumonia? Minerva Anestesiol 76:824–832Google Scholar
  2. 2.
    Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173. CrossRefGoogle Scholar
  3. 3.
    Vincent JL (2014) Vaccine development and passive immunization for Pseudomonas aeruginosa in critically ill patients: a clinical update. Future microbiology 9:457–463. CrossRefGoogle Scholar
  4. 4.
    Murphy TF (2009) Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med 15:138–142. CrossRefGoogle Scholar
  5. 5.
    Talwalkar JS, Murray TS (2016) The approach to Pseudomonas aeruginosa in cystic fibrosis. Clin Chest Med 37:69–81. CrossRefGoogle Scholar
  6. 6.
    Schneider Muriel C (2007) Interactions between Neisseria meningitidis and the complement system. Trends Microbiol 15(5):233–240. CrossRefGoogle Scholar
  7. 7.
    O’Shaughnessy Colette M, Cunningham AF (2012) The stability of complement-mediated bactericidal activity in human serum against Salmonella. PLoS ONE 3:3. Google Scholar
  8. 8.
    Morgan BP (2005) Complement: central to innate immunity and bridging to adaptive responses. Immunol Lett 97(2):171–179. CrossRefGoogle Scholar
  9. 9.
    Putker F, Bos MP, Tommassen J (2015) Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 39:985–1002. CrossRefGoogle Scholar
  10. 10.
    El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM (2015) Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 10:1683–1706. CrossRefGoogle Scholar
  11. 11.
    Winstanley C, O’Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327–337. CrossRefGoogle Scholar
  12. 12.
    de Carvalho CC (2012) Biofilms: new ideas for an old problem. Recent Pat Biotechnol 6:13–22. CrossRefGoogle Scholar
  13. 13.
    Van Acker H, Coenye T (2016) The role of efflux and physiological adaptation in biofilm tolerance and resistance. J Biol Chem 291:12565–12572. CrossRefGoogle Scholar
  14. 14.
    Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347. CrossRefGoogle Scholar
  15. 15.
    Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456. CrossRefGoogle Scholar
  16. 16.
    Gunn JS, Bakaletz LO, Wozniak DJ (2016) What’s on the outside matters: the role of the extracellular polymeric substance of Gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem 291:12538–12546. CrossRefGoogle Scholar
  17. 17.
    Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339. CrossRefGoogle Scholar
  18. 18.
    Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151. CrossRefGoogle Scholar
  19. 19.
    Lin TL, Hsieh PF, Huang YT, Lee WC, Tsai YT, Su PA, Pan YJ, Hsu CR, Wu MC, Wang JT (2014) Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 210:1734–1744. CrossRefGoogle Scholar
  20. 20.
    Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311. CrossRefGoogle Scholar
  21. 21.
    Wang Y, Wang W, Lv Y, Zheng W, Mi Z, Pei G, An X, Xu X, Han C, Liu J, Zhou C, Tong Y (2014) Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium. J Gen Virol 95:2565–2575. CrossRefGoogle Scholar
  22. 22.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. CrossRefGoogle Scholar
  23. 23.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. CrossRefGoogle Scholar
  24. 24.
    Fomsgaard A, Freudenberg MA, Galanos C (1990) Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol 28:2627–2631Google Scholar
  25. 25.
    Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA (2015) Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 59:1983–1991. CrossRefGoogle Scholar
  26. 26.
    Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE (2014) Bacterial pectate lyases, structural and functional diversity. Environ Microbiol Rep 6:427–440CrossRefGoogle Scholar
  27. 27.
    Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947. CrossRefGoogle Scholar
  28. 28.
    Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11:223–226. discussion 237-229 CrossRefGoogle Scholar
  29. 29.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. CrossRefGoogle Scholar
  30. 30.
    Adhya S, Merril CR, Biswas B (2014) Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb Perspect Med 4:a012518. CrossRefGoogle Scholar
  31. 31.
    Gorski A, Dabrowska K, Hodyra-Stefaniak K, Borysowski J, Miedzybrodzki R, Weber-Dabrowska B (2015) Phages targeting infected tissues: novel approach to phage therapy. Future Microbiol 10:199–204. CrossRefGoogle Scholar
  32. 32.
    Cornelissen A, Ceyssens PJ, T’Syen J, Van Praet H, Noben JP, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage phi15 displays virion-associated biofilm degradation properties. PLoS ONE 6:e185977. CrossRefGoogle Scholar
  33. 33.
    Glonti T, Chanishvili N, Taylor PW (2010) Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol 108:695–702. CrossRefGoogle Scholar
  34. 34.
    Bartell PF, Orr TE, Lam GK (1966) Polysaccharide depolymerase associated with bacteriophage infection. J Bacteriol 92:56–62Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liyuan Mi
    • 1
  • Yannan Liu
    • 2
    • 4
  • Can Wang
    • 2
  • Tongtong He
    • 3
  • Shan Gao
    • 1
  • Shaozhen Xing
    • 3
  • Yong Huang
    • 3
  • Hang Fan
    • 3
  • Xianglilan Zhang
    • 3
  • Wengong Yu
    • 1
  • Zhiqiang Mi
    • 3
  • Yigang Tong
    • 3
  • Changqing Bai
    • 2
    Email author
  • Feng Han
    • 1
    Email author
  1. 1.Key Laboratory of Marine Drugs, Chinese Ministry of Education; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province; School of Medicine and Pharmacy; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyOcean University of ChinaQingdaoChina
  2. 2.Department of Respiratory and Critical Care Medicine307th Hospital of PLABeijingChina
  3. 3.State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
  4. 4.Department of Respiratory and Critical Care MedicinePeking University People’s HospitalBeijingChina

Personalised recommendations