Advertisement

Virus Genes

pp 1–7 | Cite as

Nasal virome of dogs with respiratory infection signs include novel taupapillomaviruses

  • Eda Altan
  • M. Alexis Seguin
  • Christian M. Leutenegger
  • Tung Gia Phan
  • Xutao Deng
  • Eric DelwartEmail author
Article

Abstract

Using viral metagenomics, we characterized the mammalian virome of nasal swabs from 57 dogs with unexplained signs of respiratory infection showing mostly negative results using the IDEXX Canine Respiratory Disease RealPCR™ Panel. We identified canine parainfluenza virus 5, canine respiratory coronavirus, carnivore bocaparvovirus 3, canine circovirus and canine papillomavirus 9. Novel canine taupapillomaviruses (CPV21-23) were also identified in 3 dogs and their complete genome sequenced showing L1 nucleotide identity ranging from 68.4 to 70.3% to their closest taupapillomavirus relative. Taupapillomavirus were the only mammalian viral nucleic acids detected in two affected dogs, while a third dog was coinfected with low levels of canine parainfluenza 5. A role for these taupapillomavirues in canine respiratory disease remains to be determined.

Keywords

Papillomaviridae Papillomavirus Taupapillomavirus Canine Next generation sequencing Respiratory infection 

Notes

Acknowledgements

We acknowledge the support from Vitalant Research Institute and IDEXX laboratories.

Authors’ contributions

ED, CML and EA designed the study. EA, TGP and MAS performed the experiments. ED, EA and XD analyzed the data. ED and EA wrote the manuscript. ED and CML edited the manuscript and provided funding. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have conflict of interests.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

11262_2019_1634_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1. Primers were used in this study. PCR primers used to identify taupapilllomavirus positive samples in the pool samples and complete the genomes (XLSX 12 KB)
11262_2019_1634_MOESM2_ESM.pptx (424 kb)
Supplementary material 2. ORF maps of CPV21, 22, 23 and CPV13. GenBank accession numbers; MH285952, MH285953, MH285954 (PPTX 424 KB)
11262_2019_1634_MOESM3_ESM.xlsx (10 kb)
Supplementary material 3. Predicted open reading frames (ORFs) in the genome of CPV21, 22, 23. The predicted ORFs and characteristics of their putative protein products (XLSX 10 KB)
11262_2019_1634_MOESM4_ESM.docx (15 kb)
Supplementary material 4. Genome motifs of CPV21, 22, 23. Table include ; Genome length, GC content, the long control region, zinc binding domains, ATP binding site, leucine-zipper domain, Cycling A interaction motif, Polyadenylation signal, E1 C-terminal, E1 N-terminal (DOCX 15 KB)

References

  1. 1.
    Appel MJ, Binn LN (1987) Canine infectious tracheobronchitis short review: kennel cough. Virus infections of carnivors. Elseiver Science Publishing Co, New YorkGoogle Scholar
  2. 2.
    Ditchfield J, Macpherson LW, Zbitnew A (1962) Association of canine adenovirus (Toronto A 26/61) with an outbreak of laryngotracheitis (Kennel cough): a preliminary report. Can Vet J 3:238–247Google Scholar
  3. 3.
    Erles K, Dubovi EJ, Brooks HW, Brownlie J (2004) Longitudinal study of viruses associated with canine infectious respiratory disease. J Clin Microbiol 42(10):4524–4529.  https://doi.org/10.1128/JCM.42.10.4524-4529.2004 CrossRefGoogle Scholar
  4. 4.
    Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP, Chen L, Smith C, Hill RC, Ferro P, Pompey J, Bright RA, Medina MJ, Johnson CM, Olsen CW, Cox NJ, Klimov AI, Katz JM, Donis RO (2005) Transmission of equine influenza virus to dogs. Science 310(5747):482–485.  https://doi.org/10.1126/science.1117950 CrossRefGoogle Scholar
  5. 5.
    Martella V, Lanave G, Mihalov-Kovacs E, Marton S, Varga-Kugler R, Kaszab E, Di Martino B, Camero M, Decaro N, Buonavoglia C, Banyai K (2018) Novel parvovirus related to primate bufaviruses in dogs. Emerg Infect Dis 24(6):1061–1068.  https://doi.org/10.3201/eid2406.171965 CrossRefGoogle Scholar
  6. 6.
    Taxonomy V (2016) https://talk.ictvonline.org/taxonomy/. Accessed February 2 2018
  7. 7.
    M’Fadyean J, Hobday F (1898) Note on the experimental transmission of warts in the dog. J Comp Pathol Ther 11:341–344.  https://doi.org/10.1016/S0368-1742(98)80056-8 CrossRefGoogle Scholar
  8. 8.
    Chambers VC, Evans CA (1959) Canine oral papillomatosis. I. Virus assay and observations on the various stages of the experimental infection. Cancer Res 19:1188–1195Google Scholar
  9. 9.
    Bredal WP, Thoresen SI, Rimstad E, Aleksandersen M, Nafstad PH (1996) Diagnosis and clinical course of canine oral papillomavirus infection. J Small Anim Pract 37(3):138–142CrossRefGoogle Scholar
  10. 10.
    Le Net JL, Orth G, Sundberg JP, Cassonnet P, Poisson L, Masson MT, George C, Longeart L (1997) Multiple pigmented cutaneous papules associated with a novel canine papillomavirus in an immunosuppressed dog. Vet Pathol 34(1):8–14.  https://doi.org/10.1177/030098589703400102 CrossRefGoogle Scholar
  11. 11.
    Sundberg JP, Smith EK, Herron AJ, Jenson AB, Burk RD, Van Ranst M (1994) Involvement of canine oral papillomavirus in generalized oral and cutaneous verrucosis in a Chinese Shar Pei dog. Vet Pathol 31(2):183–187.  https://doi.org/10.1177/030098589403100204 CrossRefGoogle Scholar
  12. 12.
    Sundberg JP, O’Banion MK, Schmidt-Didier E, Reichmann ME (1986) Cloning and characterization of a canine oral papillomavirus. Am J Vet Res 47(5):1142–1144Google Scholar
  13. 13.
    Munday JS, Thomson NA, Luff JA (2017) Papillomaviruses in dogs and cats. Vet J 225:23–31.  https://doi.org/10.1016/j.tvjl.2017.04.018 CrossRefGoogle Scholar
  14. 14.
    Zhou D, Paul S, Alkhilaiwi F, Clark M, Schlegel R, Yuan H (2016) Canine papillomavirus 20 isolate Ada, complete genome. GenBank. https://www.ncbi.nlm.nih.gov/nucleotide/1008264056. Accessed Feb 2018
  15. 15.
    Tisza MJ, Yuan H, Richard S, Buck CB (2016) Canine Papillomavirus 19 isolate tvmb1, complete genome. https://www.ncbi.nlm.nih.gov/nucleotide/1064859043. Accessed Feb 2018
  16. 16.
    Tisza MJ, Yuan H, Schlegel R, Buck CB (2016) Genomic sequence of Canine Papillomavirus 19. Genome Announc 4 (6).  https://doi.org/10.1128/genomeA.01380-16
  17. 17.
    Lange CE, Diallo A, Zewe C, Ferrer L (2016) Novel canine papillomavirus type 18 found in pigmented plaques. Papillomavirus Res 2:159–163.  https://doi.org/10.1016/j.pvr.2016.08.001 CrossRefGoogle Scholar
  18. 18.
    Lange CE, Favrot C (2011) Canine papillomaviruses. Vet Clin N Am Small Anim Pract 41(6):1183–1195.  https://doi.org/10.1016/j.cvsm.2011.08.003 CrossRefGoogle Scholar
  19. 19.
    Munday JS, Dunowska M, Laurie RE, Hills S (2016) Genomic characterisation of canine papillomavirus type 17, a possible rare cause of canine oral squamous cell carcinoma. Vet Microbiol 182:135–140.  https://doi.org/10.1016/j.vetmic.2015.11.015 CrossRefGoogle Scholar
  20. 20.
    Lange CE, Ackermann M, Favrot C, Tobler K (2012) Entire genomic sequence of novel canine papillomavirus type 13. J Virol 86(18):10226–10227.  https://doi.org/10.1128/JVI.01553-12 CrossRefGoogle Scholar
  21. 21.
    Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E (2009) Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83(9):4642–4651.  https://doi.org/10.1128/JVI.02301-08 CrossRefGoogle Scholar
  22. 22.
    Li L, Deng X, Mee ET, Collot-Teixeira S, Anderson R, Schepelmann S, Minor PD, Delwart E (2015) Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent. J Virol Methods 213:139–146.  https://doi.org/10.1016/j.jviromet.2014.12.002 CrossRefGoogle Scholar
  23. 23.
    Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL (2015) An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkv002 Google Scholar
  24. 24.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefGoogle Scholar
  25. 25.
    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066CrossRefGoogle Scholar
  26. 26.
    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  28. 28.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454 Google Scholar
  29. 29.
    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101(30):11030–11035.  https://doi.org/10.1073/pnas.0404206101 CrossRefGoogle Scholar
  30. 30.
    Thomas M, Myers MP, Massimi P, Guarnaccia C, Banks L (2016) Analysis of multiple HPV E6 PDZ interactions defines type-specific PDZ fingerprints that predict oncogenic potential. PLoS Pathog 12(8):e1005766.  https://doi.org/10.1371/journal.ppat.1005766 CrossRefGoogle Scholar
  31. 31.
    Wang J, Zhou D, Prabhu A, Schlegel R, Yuan H (2010) The canine papillomavirus and gamma HPV E7 proteins use an alternative domain to bind and destabilize the retinoblastoma protein. PLoS Pathog 6(9):e1001089.  https://doi.org/10.1371/journal.ppat.1001089 CrossRefGoogle Scholar
  32. 32.
    Schinazi RF, Goudgaon NM, Fulcrand G, el Kattan Y, Lesnikowski Z, Ullas G, Moravek J, Liotta DC (1994) Cellular pharmacology and biological activity of 5-carboranyl-2′-deoxyuridine. Int J Radiat Oncol Biol Phys 28(5):1113–1120CrossRefGoogle Scholar
  33. 33.
    Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401(1):70–79.  https://doi.org/10.1016/j.virol.2010.02.002 CrossRefGoogle Scholar
  34. 34.
    de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, zur Hausen H (2004) Classification of papillomaviruses. Virology 324(1):17–27.  https://doi.org/10.1016/j.virol.2004.03.033 CrossRefGoogle Scholar
  35. 35.
    Van Doorslaer K, Chen Z, Bernard HU, Chan PKS, DeSalle R, Dillner J, Forslund O, Haga T, McBride AA, Villa LL, Burk RD, Ictv Report C (2018) ICTV virus taxonomy profile: Papillomaviridae. J Gen Virol 99(8):989–990.  https://doi.org/10.1099/jgv.0.001105 CrossRefGoogle Scholar
  36. 36.
    Munday JS, Dunowska M, Hills SF, Laurie RE (2013) Genomic characterization of Felis catus papillomavirus-3: a novel papillomavirus detected in a feline Bowenoid in situ carcinoma. Vet Microbiol 165(3–4):319–325.  https://doi.org/10.1016/j.vetmic.2013.04.006 CrossRefGoogle Scholar
  37. 37.
    Dunowska M, Munday JS, Laurie RE, Hills SF (2014) Genomic characterisation of Felis catus papillomavirus 4, a novel papillomavirus detected in the oral cavity of a domestic cat. Virus Genes 48(1):111–119.  https://doi.org/10.1007/s11262-013-1002-3 CrossRefGoogle Scholar
  38. 38.
    ICTV Report C (2017) Virus taxonomy: 2017 release Papillomaviridae. ICTV. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/121/papillomaviridae. 2018
  39. 39.
    Smits SL, Raj VS, Oduber MD, Schapendonk CM, Bodewes R, Provacia L, Stittelaar KJ, Osterhaus AD, Haagmans BL (2013) Metagenomic analysis of the ferret fecal viral flora. PLoS ONE 8(8):e71595.  https://doi.org/10.1371/journal.pone.0071595 CrossRefGoogle Scholar
  40. 40.
    Priestnall SL, Mitchell JA, Walker CA, Erles K, Brownlie J (2014) New and emerging pathogens in canine infectious respiratory disease. Vet Pathol 51(2):492–504.  https://doi.org/10.1177/0300985813511130 CrossRefGoogle Scholar
  41. 41.
    Munday JS, Witham AI (2010) Frequent detection of papillomavirus DNA in clinically normal skin of cats infected and noninfected with feline immunodeficiency virus. Vet Dermatol 21(3):307–310.  https://doi.org/10.1111/j.1365-3164.2009.00811.x CrossRefGoogle Scholar
  42. 42.
    Lange CE, Zollinger S, Tobler K, Ackermann M, Favrot C (2011) Clinically healthy skin of dogs is a potential reservoir for canine papillomaviruses. J Clin Microbiol 49(2):707–709.  https://doi.org/10.1128/JCM.02047-10 CrossRefGoogle Scholar
  43. 43.
    Joffe DJ, Lelewski R, Weese JS, McGill-Worsley J, Shankel C, Mendonca S, Sager T, Smith M, Poljak Z (2016) Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. Can Vet J 57(1):46–51Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Eda Altan
    • 1
    • 2
  • M. Alexis Seguin
    • 3
  • Christian M. Leutenegger
    • 4
  • Tung Gia Phan
    • 1
    • 2
  • Xutao Deng
    • 1
    • 2
  • Eric Delwart
    • 1
    • 2
    Email author
  1. 1.Vitalant Research InstituteSan FranciscoUSA
  2. 2.Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoUSA
  3. 3.IDEXX Laboratories, Inc.WestbrookUSA
  4. 4.IDEXX Laboratories, Inc.West SacramentoUSA

Personalised recommendations