Virus Genes

, Volume 55, Issue 2, pp 257–265 | Cite as

Isolation and characterization of bacteriophage NTR1 infectious for Nocardia transvalensis and other Nocardia species

  • Stephanie Taylor
  • Teagan L. Brown
  • Joseph Tucci
  • Peter Lock
  • Robert J. Seviour
  • Steve PetrovskiEmail author


We describe here the isolation and characterization of the bacteriophage, NTR1 from activated sludge. This phage is lytic for Nocardia transvalensis, Nocardia brasiliensis and Nocardia farcinica. NTR1 phage has a genome sequence of 65,275 bp in length, and its closest match is to the Skermania piniformis phage SPI1 sharing over 36% of its genome. The phage belongs to the Siphoviridae family, possessing a long non-contractile tail and icosahedral head. Annotation of the genome reveals 97 putative open reading frames arranged in the characteristic modular organization of Siphoviridae phages and contains a single tRNA-Met gene.


Bacteriophage Nocardia phage Genome sequence Phage therapy Siphoviridae 



We would like to acknowledge the LIMS BioImaging Facility for use of the Electron Microscope and the La Trobe University Genomics Platform.

Author contributions

JT, RJS and SP conceived the study as part of a larger project. SP commenced the project and ST and TLB performed the sequencing and annotation. PL generated the transmission electron microscope image. ST and SP performed the DNA sequence analysis and wrote the manuscript. All authors approved the manuscript.


The Petrovski laboratory receives supported from the La Trobe University, Research Focus Area (RFA) securing food, water and the environment.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    CarlosC, GhislainF, SandraC-C, Marie-LiseD, HaraldB (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol6:417–424CrossRefGoogle Scholar
  2. 2.
    PetrovskiS, SeviourRJ, TillettD (2013) Characterization and whole genome sequences of the Rhodococcus bacteriophages RGL3 and RER2. Arch Virol158:601–609CrossRefGoogle Scholar
  3. 3.
    RohwerF (2003) Global phage diversity. Cell113:141CrossRefGoogle Scholar
  4. 4.
    Brown-ElliottBA, BrownJM, ConvillePS, WallaceRJ (2006) Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev19:259–282CrossRefGoogle Scholar
  5. 5.
    CasjensSR (2005) Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol8:451–458CrossRefGoogle Scholar
  6. 6.
    HendrixRW, SmithMC, BurnsRN, FordME, HatfullGF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’sa phage. Proc Natl Acad Sci96:2192–2197CrossRefGoogle Scholar
  7. 7.
    PetrovskiS, SeviourRJ, TillettD (2014) Genome sequence of the Nocardia bacteriophage NBR1. Arch Virol159:167–173CrossRefGoogle Scholar
  8. 8.
    DesiereF, McShanWM, vanSinderenD, FerrettiJJ, BrüssowH (2001) Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology288:325–341CrossRefGoogle Scholar
  9. 9.
    HendrixRW (2003) Bacteriophage genomics. Curr Opin Microbiol6:506–511CrossRefGoogle Scholar
  10. 10.
    PopeWH, MavrichTN, GarlenaRA, Guerrero-BustamanteCA, Jacobs-SeraD, MontgomeryMT, RussellDA, WarnerMH, HatfullGF (2017) Bacteriophages of Gordoniaspp. display a spectrum of diversity genetic relationships. mBio8:e01069–e01017CrossRefGoogle Scholar
  11. 11.
    Jurczak-KurekA, GasiorT, Najman-FalenczykB, BlochS, DydeckaA, TopkaG, NecelA, Jakubowska-DeredasM, NarajczykM, RichertM, MieszkowskaA, WrobelB, WegrzynG, WegrzynA (2016) Biodiversity of bacteriophages: morphological and biologicial properties of a large group of phages isolated from urban sewage. Sci Rep6:34338CrossRefGoogle Scholar
  12. 12.
    De losReyesF (2010) Foaming. In: Microbial ecology of activated sludge. IWA, London, pp 215–258Google Scholar
  13. 13.
    PetrovskiS, DysonZA, QuillES, McIlroySJ, TillettD, SeviourRJ (2011) An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res45:2146–2154CrossRefGoogle Scholar
  14. 14.
    PetrovskiS, SeviourRJ, TillettD (2011) Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia-, Rhodococcus-, and Nocardia-stabilized foams in activated sludge plants. Appl Environ Microbiol77:3923–3929CrossRefGoogle Scholar
  15. 15.
    BarkaEA, VatsaP, SanchezL, Gaveau-VaillantN, JacquardC, KlenkH-P, ClémentC, OuhdouchY, vanWezelGP (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev80:1–43CrossRefGoogle Scholar
  16. 16.
    XiaoM, PangL, ChenSC, FanX, ZhangL, LiH-X, HouX, ChengJ-W, KongF, ZhaoY-P (2016) Accurate identification of common pathogenic Nocardia species: evaluation of a multilocus sequence analysis platform and matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS ONE11:e0147487CrossRefGoogle Scholar
  17. 17.
    EkramiA, KhosraviAD, ZadehARS, HashemzadehM (2014) Nocardia co-infection in patients with pulmonary tuberculosis. Jundishapur J Microbiol7:e12495CrossRefGoogle Scholar
  18. 18.
    GlupczynskiY, BerhinC, JanssensM, WautersG (2006) Determination of antimicrobial susceptibility patterns of Nocardia spp. from clinical specimens by Etest. Clin Microbiol Infect12:905–912CrossRefGoogle Scholar
  19. 19.
    KandiV (2015) Human Nocardia infections: a review of pulmonary nocardiosis. Cureus7:e304–e304Google Scholar
  20. 20.
    McNerneyR (1999) TB: the return of the phage. A review of fifty years of mycobacteriophage research. Int J Tuberc Lung Dis3:179–184Google Scholar
  21. 21.
    TorresO, DomingoP, PericasR, BoironP, MontielJ, VazquezG (2000) Infection caused by Nocardia farcinica: case report and review. Eur J Clin Microbiol Infect Dis19:205–212CrossRefGoogle Scholar
  22. 22.
    ConvillePS, Brown-ElliottBA, SmithT, ZelaznyAM (2017) The complexities of Nocardia taxonomy and identification. J Clin Microbiol56:e01419–e01417CrossRefGoogle Scholar
  23. 23.
    AnagnostouT, ArvanitisM, KourkoumpetisTK, DesalermosA, CarneiroHA, MylonakisE (2014) Nocardiosis of the central nervous system: experience from a general hospital and review of 84 cases from the literature. Medicine93:19–32CrossRefGoogle Scholar
  24. 24.
    CândidaA, NunoR-P, AntónioS, FernandoM (2015) Nocardia infections among immunomodulated inflammatory bowel disease patients: a review. World J Gastroenterol21:6491–6498CrossRefGoogle Scholar
  25. 25.
    ChenJ, ZhouH, XuP, ZhangP, MaS, ZhouJ (2014) Clinical and radiographic characteristics of pulmonary nocardiosis: clues to earlier diagnosis. PLoS ONE9:e90724CrossRefGoogle Scholar
  26. 26.
    CastellanaG, GrimaldiA, CastellanaM, FarinaC, CastellanaG (2016) Pulmonary nocardiosis in chronic obstructive pulmonary disease: a new clinical challenge. Respir Med Case Rep18:14–21Google Scholar
  27. 27.
    PetrovskiS, SeviourRJ, TillettD (2011) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microbiol77:1389–1398CrossRefGoogle Scholar
  28. 28.
    DysonZ, TucciJ, SeviourR, PetrovskiS (2016) Isolation and characterization of bacteriophage SPI1, which infects the activated-sludge-foaming bacterium Skermania piniformis. Arch Virol161:149–158CrossRefGoogle Scholar
  29. 29.
    LopesA, TavaresP, PetitMA, GueroisR, Zinn-JustinS (2014) Automated classification of tailed bacteriophages according to their neck organization. BMC Genom15:1027CrossRefGoogle Scholar
  30. 30.
    DelcherAL, BratkeKA, PowersEC, SalzbergSL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics23:673–679CrossRefGoogle Scholar
  31. 31.
    RaoVB, FeissM (2008) The bacteriophage DNA packaging motor. Annu Rev Genet42:647–681CrossRefGoogle Scholar
  32. 32.
    FujisawaH, MoritaM (1997) Phage DNA packaging. Genes Cells2:537–545CrossRefGoogle Scholar
  33. 33.
    HatfullGF (2012) The secret lives of mycobacteriophage. Adv Virus Res82:179–288CrossRefGoogle Scholar
  34. 34.
    GaoB, GuptaRS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev76:66–112CrossRefGoogle Scholar
  35. 35.
    MakarovaKS, GrishinNV, KooninEV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics22:2581–2584CrossRefGoogle Scholar
  36. 36.
    ParkSJ, SonWS, LeeB-J (2013) Structural overview of toxin–antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. Biochim Biophys Acta (BBA)-Proteins Proteom1834:1155–1167CrossRefGoogle Scholar
  37. 37.
    JørgensenMG, PandeyDP, JaskolskaM, GerdesK (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol191:1191–1199CrossRefGoogle Scholar
  38. 38.
    TurnbullKJ, GerdesK (2017) HicA toxin of Escherichia coli derepresses hicAB transcription to selectively produce HicB antitoxin. Mol Microbiol104:781–792CrossRefGoogle Scholar
  39. 39.
    VeeslerD, CambillauC (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev75:423–433CrossRefGoogle Scholar
  40. 40.
    XuJ, HendrixRW, DudaRL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell16:11–21CrossRefGoogle Scholar
  41. 41.
    AravindL, KooninEV (2000) SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci25:112–114CrossRefGoogle Scholar
  42. 42.
    SharplesGJ (2001) The X philes: structure-specific endonucleases that resolve Holliday junctions. Mol Microbiol39:823–834CrossRefGoogle Scholar
  43. 43.
    vanGoolAJ, HajibagheriNM, StasiakA, WestSC (1999) Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of Holliday junction resolution. Genes Dev13:1861–1870CrossRefGoogle Scholar
  44. 44.
    McGregorN, AyoraS, SedelnikovaS, CarrascoB, AlonsoJC, ThawP, RaffertyJ (2005) The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage. Structure13:1341–1351CrossRefGoogle Scholar
  45. 45.
    BidnenkoE, EhrlichSD, ChopinMC (1998) Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. Mol Microbiol28:823–834CrossRefGoogle Scholar
  46. 46.
    SaitoA, IwasakiH, AriyoshiM, MorikawaK, ShinagawaH (1995) Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase. Proc Natl Acad Sci92:7470–7474CrossRefGoogle Scholar
  47. 47.
    HatfullGF (2016) Complete genome sequences of 61 mycobacteriophages. Genome Announc4:e00389–e00316CrossRefGoogle Scholar
  48. 48.
    AmmelburgM, FrickeyT, LupasAN (2006) Classification of AAA + proteins. J Struct Biol156:2–11CrossRefGoogle Scholar
  49. 49.
    SanchezH, KidaneD, ReedP, CurtisFA, CozarMC, GraumannPL, SharplesGJ, AlonsoJC (2005) The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics171:873–883CrossRefGoogle Scholar
  50. 50.
    LippsG, WeinzierlAO, vonSchevenG, CramerP (2004) Structure of a bifunctional DNA primase-polymerase. Nat Struct Mol Biol11:157–162CrossRefGoogle Scholar
  51. 51.
    SelbitschkaW, ArnoldW, PrieferUB, RottschäferT, SchmidtM, SimonR, PühlerA (1991) Characterization of recA genes and recA mutants of Rhizobiummeliloti and Rhizobiumleguminosarum biovar viciae. Mol Gen Genet229:86–95CrossRefGoogle Scholar
  52. 52.
    ShinDH, YokotaH, KimR, KimS-H (2002) Crystal structure of conserved hypothetical protein Aq1575 from Aquifex aeolicus. Proc Natl Acad Sci99:7980–7985CrossRefGoogle Scholar
  53. 53.
    NobregaFL, CostaAR, KluskensLD, AzeredoJ (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol23:185–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Anatomy & MicrobiologyLa Trobe UniversityBundooraAustralia
  2. 2.Department of Pharmacy & Applied Science, La Trobe Institute for Molecular ScienceLa Trobe UniversityBendigoAustralia
  3. 3.La Trobe Institute for Molecular SciencesLa Trobe UniversityBundooraAustralia

Personalised recommendations