Advertisement

Virus Genes

, Volume 54, Issue 4, pp 502–513 | Cite as

Altered microRNA expression signature in Chikungunya-infected mammalian fibroblast cells

  • Deepti Parashar
  • Mandar S. Paingankar
  • Ashwini More
  • Poonam Patil
  • Sarika Amdekar
Article

Abstract

Chikungunya virus (CHIKV) infection can cause severe arthralgia and chronic arthritis in humans. MicroRNAs (miRNA) have demonstrated their potential use as biomarker in variety of human pathologies and infections. This study was conducted to understand the miRNA signature in early CHIKV infection stages. In the current study, we used TaqMan-based quantitative PCR method to identify the miRNA signature of host response upon CHIKV infection in human and mouse fibroblast cells. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are to be involved in RIG-I pathway, TGF-beta-signaling pathway, JAK–STAT-signaling pathway, MAPK-signaling pathway, cytokine–cytokine receptor interactions, and Fc gamma R-mediated phagocytosis. The results obtained in the current study and earlier studies indicate the potential use of miR15, miR-16, miR-17, let-7e, miR-125, miR-99, and miR-23a as a biomarker in CHIKV infection. miRNAs such as miR-15a, miR-16, miR-140, miR-146a, miR-155, miR203, miR223, miR-499, and miR-363 which are implicated in rheumatoid arthritis showed differential regulation in CHIKV infection. The data obtained in this study provide valuable information on CHIKV-induced miRNA expression in mammalian fibroblast cells, and suggest that CHIKV may establish infection by regulating miRNA expression profile.

Keywords

Arthralgia CHIKV infection Functional enrichment MicroRNA profiling Target prediction 

Notes

Acknowledgements

The authors would like to acknowledge financial support provided by the Indian Council of Medical Research (ICMR), Ministry of Health and Family Welfare, Government of India. The funding agency had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceived and designed the experiments: DP and MSP. Performed the experiments: AM, PP, and SA. Analyzed the data: DP and MSP. Wrote the paper: DP and MSP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research described in the paper does not use any human or animal subjects.

Supplementary material

11262_2018_1578_MOESM1_ESM.xls (40 kb)
Supplementary Data SI1: miRNA expression profiling data mouse fibroblast cells (Mocha): Mocha cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The excel file sheets specifying miRNAs found to be more than twofold up-regulated or down-regulated (t test—P<0.05) at 2, 4, 8, and 16 h post-CHIKV infection as compared to control are shown along with the mean fold change values and standard deviation. (XLS 40 KB)
11262_2018_1578_MOESM2_ESM.xls (191 kb)
Supplementary Data SI2: Biological functions of predicted target genes of differentially regulated miRNAs in mouse fibroblast cells. Mocha cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The predicted target genes of miRNAs were placed in different biological processes based on analysis in the DAVID software. (XLS 191 KB)
11262_2018_1578_MOESM3_ESM.xls (60 kb)
Supplementary Data SI3: Molecular processes of predicted target genes of differentially regulated miRNAs in mouse fibroblast cells. Mocha cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The predicted target genes of miRNAs were placed in different molecular processes based on analysis in the DAVID software. (XLS 60 KB)
11262_2018_1578_MOESM4_ESM.xls (33 kb)
Supplementary Data SI4: KEGG pathway of predicted target genes of differentially regulated miRNAs in mouse fibroblast cells. Mocha cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The predicted target genes of miRNAs were placed in different KEGG pathways based on analysis in the DAVID software. (XLS 33 KB)
11262_2018_1578_MOESM5_ESM.xls (50 kb)
Supplementary Data SI5: miRNA expression profiling data human fibroblast cells (1BR3): 1BR3 cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The excel file sheets specifying miRNAs found to be more than twofold up-regulated or down-regulated (t test—P<0.05) at at 2, 4, 8, and 16 h post CHIKV infection as compared to control are shown along with the mean fold change values and standard deviation. (XLS 50 KB)
11262_2018_1578_MOESM6_ESM.xls (614 kb)
Supplementary Data SI6: Biological functions of predicted target genes of differentially regulated miRNAs in human fibroblast cells. 1BR3 cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The predicted target genes of miRNAs were placed in different biological processes based on analysis in the DAVID software. (XLS 613 KB)
11262_2018_1578_MOESM7_ESM.xls (149 kb)
Supplementary Data SI7: Molecular processes of predicted target genes of differentially regulated miRNAs in human fibroblast cells. 1BR3 cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The predicted target genes of miRNAs were placed in different molecular processes based on analysis in the DAVID software. (XLS 149 KB)
11262_2018_1578_MOESM8_ESM.xls (66 kb)
Supplementary Data SI8: KEGG pathway of predicted target genes of differentially regulated miRNAs in human fibroblast cells. 1BR3 cells were infected with CHIKV and miRNA expression profiling was done at 2, 4, 8, and 16 h post-infection. The predicted target genes of miRNAs were placed in different KEGG pathways based on analysis in the DAVID software. (XLS 65 KB)
11262_2018_1578_MOESM9_ESM.xlsx (16 kb)
Supplementary Data SI9: The miRNA signature in different cells after JE, DENV, WNV, and infection. (XLSX 15 KB)

References

  1. 1.
    O. Takeuchi, S. Akira, Curr. Opin. Immunol. 20, 17–22 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    M.R. Thompson, J.J. Kaminski, E.A. Kurt-Jones, K.A. Fitzgerald, Viruses 3, 920–940 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    M.A. Lindsay, Trends Immunol. 29, 343–351 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Meunier, F. Lemoine, M. Soumillon, A. Liechti, M. Weier, K. Guschanski, H. Hu, P. Khaitovich, H. Kaessmann, Genome Res. 23, 34–45 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    O. Hobert, Trends Biochem. Sci. 29, 462–468 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    L. Song, R.S. Tuan, Birth Defects Res. C 78, 140–149 (2006)CrossRefGoogle Scholar
  7. 7.
    Z. Ghosh, B. Mallick, J. Chakrabarti, Nucleic Acids Res. 37, 1035–1048 (2009)CrossRefPubMedGoogle Scholar
  8. 8.
    E. Gottwein, B.R. Cullen, Cell Host Microbe 3, 375–387 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    K. Duskova, P. Nagilla, H.S. Le, P. Iyer, A. Thalamuthu, J. Martinson, Z. Bar-Joseph, W. Buchanan, C. Rinaldo, V. Ayyavoo, BMC Infect. Dis. 13, 250 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    E. Gottwein, D.L. Corcoran, N. Mukherjee, R.L. Skalsky, M. Hafner, J.D. Nusbaum, P. Shamulailatpam, C.L. Love, S.S. Dave, T. Tuschl, U. Ohler, B.R. Cullen, Cell Host Microbe 10, 515–526 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    C.L. Jopling, M. Yi, A.M. Lancaster, S.M. Lemon, P. Sarnow, Science 309, 1577–1581 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Li, E.Y. Chan, J. Li, C. Ni, X. Peng, E. Rosenzweig, T.M. Tumpey, M.G. Katze, J. Virol. 84, 3023–3032 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    T. Saxena, B. Tandon, S. Sharma, S. Chameettachal, P. Ray, A.R. Ray, R. Kulshreshtha, PLoS ONE 8, e79886 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    J. Shrinet, S. Jain, J. Jain, R.K. Bhatnagar, S. Sunilm, PLoS Negl. Trop. Dis. 8, e2616 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    L. Song, H. Liu, S. Gao, W. Jiang, W. Huang, J. Virol. 84, 8849–8860 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    S. Wu, L. He, Y. Li, T. Wang, L. Feng, L. Jiang, P. Zhang, X. Huang, J. Infect. 67, 329–341 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    H.T. Zhu, Q.Z. Dong, G. Wang, H.J. Zhou, N. Ren, H.L. Jia, Q.H. Ye, L.X. Qin, Mol. Biotechnol. 50, 49–56 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    A.D. LaBeaud, F. Bashir, C.H. King, Popul. Health Metr. 9, 1 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    V.A. Arankalle, S. Shrivastava, S. Cherian, R.S. Gunjikar, A.M. Walimbe, S.M. Jadhav, A.B. Sudeep, A.C. Mishra, J. Gen. Virol. 88, 1967–1976 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    Y.K. Gurav, V. Gopalkrishna, P.S. Shah, D.R. Patil, M. Mishra, M.S. Paingankar, A. Singh, P.S. Sathe, A.C. Mishra, Indian J. Med. Res. 136, 886–889 (2012)PubMedPubMedCentralGoogle Scholar
  21. 21.
    R. Kanungo, Indian J. Med. Microbiol. 26, 408 (2008)Google Scholar
  22. 22.
    T. Couderc, F. Chretien, C. Schilte, O. Disson, M. Brigitte, F. Guivel-Benhassine, Y. Touret, G. Barau, N. Cayet, I. Schuffenecker, P. Desprès, F. Arenzana-Seisdedos, A. Michault, M.L. Albert, M. Lecuit, PLoS Pathog. 4, e29 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    D.W. Hawman, K.A. Stoermer, S.A. Montgomery, P. Pal, L. Oko, M.S. Diamond, T.E. Morrison, J. Virol. 87, 13878–13888 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Z. Her, B. Malleret, M. Chan, E.K. Ong, S.C. Wong, D.J. Kwek, H. Tolou, R.T. Lin, P.A. Tambyah, L. Rénia, L.F. Ng, J. Immunol. 184, 5903–5913 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    M. Bourai, M. Lucas-Hourani, H.H. Gad, C. Drosten, Y. Jacob, L. Tafforeau, P. Cassonnet, L.M. Jones, D. Judith, T. Couderc, M. Lecuit, P. André, B.M. Kümmerer, V. Lotteau, P. Desprès, F. Tangy, P.O. Vidalain, J. Virol. 86, 3121–3134 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    S.P. Selvamani, R. Mishra, S.K. Singh, PLoS ONE 9, e103624 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    D. Parashar, M.S. Paingankar, S. Kumar, M.D. Gokhale, A.B. Sudeep, S.B. Shinde, V.A. Arankalle, PLoS Negl. Trop. Dis. 7, e2405 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    M.J. de Hoon, S. Imoto, J. Nolan, S. Miyano, Bioinformatics 20, 1453–1454 (2004)CrossRefPubMedGoogle Scholar
  29. 29.
    M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)CrossRefPubMedGoogle Scholar
  30. 30.
    F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, T. Li, Nucleic Acids Res. 37, D105–D110 (2009)CrossRefPubMedGoogle Scholar
  31. 31.
    D.W. Huang, B.T. Sherman, R.A. Lempicki, Nat. Protoc. 4, 44–57 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Mi, A. Muruganujan, J.T. Casagrande, P.D. Thomas, Nat. Protoc. 8, 1551–1566 (2013)CrossRefPubMedGoogle Scholar
  33. 33.
    A. Chatzikyriakidou, P.V. Voulgari, I. Georgiou, A.A. Drosos, Autoimmun. Rev. 1199, 636–641 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Kurowska-Stolarska, S. Alivernini, L.E. Ballantine, D.L. Asquith, N.L. Millar, D.S. Gilchrist, J. Reilly, M. Ierna, A.R. Fraser, B. Stolarski, C. McSharry, A.J. Hueber, D. Baxter, J. Hunter, S. Gay, F.Y. Liew, I.B. McInnes, Proc. Natl. Acad. Sci. USA 108, 11193–11198 (2011)CrossRefPubMedGoogle Scholar
  35. 35.
    R. Chhabra, Y.K. Adlakha, M. Hariharan, V. Scaria, N. Saini, PLoS ONE 4, e5848 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    A. Cimmino, G.A. Calin, M. Fabbri, M.V. Iorio, M. Ferracinm, M. Shimizu, S.E. Wojcik, R.I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce, Proc. Natl. Acad. Sci. USA 102, 13944–13949 (2006)CrossRefGoogle Scholar
  37. 37.
    N. Cloonan, M.K. Brown, A.L. Steptoe, S. Wani, W.L. Chan, A.R. Forrest, G. Kolle, B. Gabrielli, S.M. Grimmond, Genome Biol. 9, R127 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    S. Guo, J. Lu, R. Schlanger, H. Zhang, J.Y. Wang, M.C. Fox, L.E. Purton, H.H. Fleming, B. Cobb, M. Merkenschlager, T.R. Golub, D.T. Scadden, Proc. Natl. Acad. Sci. USA 107, 14229–14234 (2010)CrossRefPubMedGoogle Scholar
  39. 39.
    S. Huang, X. He, J. Ding, L. Liang, Y. Zhao, Z. Zhang, X. Yao, Z. Pan, P. Zhang, J. Li, D. Wan, J. Gu, Int. J. Cancer 123, 972–978 (2008)CrossRefPubMedGoogle Scholar
  40. 40.
    F. Ji, B. Yang, X. Peng, H. Ding, H. You, P. Tien, J. Viral Hepat. 18, e242–e251 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    Y. Qi, Y. Li, L. Zhang, J. Huang, Mol. Med. Rep. 7(3), 791–798 (2013)CrossRefPubMedGoogle Scholar
  42. 42.
    X. Ouyang, X. Jiang, D. Gu, Y. Zhang, S.K. Kong, C. Jiang, W. Xie, Int J. Med. Sci. 13(3), 195–205 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    M. Diosa-Toro, L. Echavarría-Consuegra, J. Flipse, G.J. Fernández, J. Kluiver, A. van den Berg, S. Urcuqui-Inchima, J.M. Smit, PLoS. Negl. Trop. Dis. 11(10), e0005981 (2017).  https://doi.org/10.1371/journal.pntd.0005981 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    B. Kumari, P. Jain, S. Das, S. Ghosal, B. Hazra, A.C. Trivedi, A. Basu, J. Chakrabarti, S. Vrati, A. Banerjee, Sci. Rep. 6, 20263 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    J.J. Fros, W.J. Liu, N.A. Prow, C. Geertsema, M. Ligtenberg, D.L. Vanlandingham, E. Schnettler, J.M. Vlak, A. Suhrbier, A.A. Khromykh, G.P. Pijlman, J. Virol. 84, 10877–10887 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    M.S. Paingankar, V.A. Arankalle, J. Biosci. 39, 389–399 (2014)CrossRefPubMedGoogle Scholar
  47. 47.
    P.E. Joubert, S.W. Werneke, C. de la Calle, F. Guivel-Benhassine, A. Giodini, L. Peduto, B. Levine, O. Schwartz, D.J. Lenschow, M.L. Albert, J. Exp. Med. 209, 1029–1047 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    P. Krejbich-Trotot, B. Gay, G. Li-Pat-Yuen, J.J. Hoarau, M.C. Jaffar-Bandjee, L. Briant, P. Gasque, M. Denizot, Virol. J. 8, 432 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    S. Alers, A.S. Löffler, S. Wesselborg, B. Stork, Mol. Cell. Biol. 32, 2–11 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    C. Schilte, F. Staikovsky, T. Couderc, Y. Madec, F. Carpentier, S. Kassab, M.L. Albert, M. Lecuit, A. Michault, PLoS Negl. Trop. Dis. 7, e2137 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    S. Miyaki, T. Nakasa, S. Otsuki, S.P. Grogan, R. Higashiyama, A. Inoue, Y. Kato, T. Sato, M.K. Lotz, H. Asahara, Arthritis Rheum. 60, 2723–2730 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Y. Nagata, T. Nakasa, Y. Mochizuki, M. Ishikawa, S. Miyaki, H. Shibuya, K. Yamasaki, N. Adachi, H. Asahara, M. Ochi, Arthritis Rheum. 60, 2677–2683 (2009)CrossRefPubMedGoogle Scholar
  53. 53.
    H. Shibuya, T. Nakasa, N. Adachi, Y. Nagata, M. Ishikawa, M. Deie, O. Suzuki, M. Ochi, Mod. Rheumatol. 23, 674–685 (2013)CrossRefPubMedGoogle Scholar
  54. 54.
    J. Stanczyk, C. Ospelt, E. Karouzakis., A. Filer, K. Raza, C. Kolling, R. Gay, C.D. Buckley, P.P. Tak, S. Gay, D. Kyburz, Arthritis Rheum. 63, 373–381 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    B. Yang, J. Chen, Y. Li, J. Zhang, D. Li, Z. Huang, B. Cai, L. Li, Y. Shi, B. Ying, L. Wang, Hum. Immunol. 73, 101–106 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Deepti Parashar
    • 1
  • Mandar S. Paingankar
    • 1
    • 2
  • Ashwini More
    • 1
  • Poonam Patil
    • 1
  • Sarika Amdekar
    • 1
  1. 1.National Institute of VirologyPuneIndia
  2. 2.Government Science CollegeGadchiroliIndia

Personalised recommendations