Advertisement

Virus Genes

, Volume 54, Issue 4, pp 612–615 | Cite as

Distribution and genetic variability of alfalfa dwarf virus, a cytorhabdovirus associated with alfalfa dwarf disease in Argentina

  • Samira Samarfard
  • Nicolas E. Bejerman
  • Ralf G. Dietzgen
Article
  • 144 Downloads

Abstract

In 2010, a novel cytorhabdovirus named alfalfa dwarf virus (ADV) was detected for the first time in lucerne crops in Argentina showing dwarfism, in mixed infections with several other viruses. ADV appears to be endemic to Argentina and has not been reported elsewhere. In this study, we have investigated the genetic variability of ADV based on the complete nucleoprotein (N) gene of 13 isolates from different lucerne-growing regions in Argentina. Phylogenetic and sequence identity analyses showed that all ADV isolates are closely related and have not diverged more than 1% in the N gene despite geographical separation. These data provide further evidence that ADV is new to science and emerged and spread very recently. A total of 43 single-nucleotide polymorphisms were identified between the ADV isolates studied. Analysis of N gene ORF sequence revealed a mutational bias, with more transitions than transversions. In all cases, the ratio of non-synonymous/synonymous nucleotide changes was < 1, indicating that ADV N gene is under predominantly purifying selection.

Keywords

Genetic diversity Cytorhabdovirus Phylogenetic analysis Single-nucleotide polymorphism Nucleoprotein gene Alfalfa dwarf disease 

Notes

Acknowledgements

We thank Verónica Trucco and Fabián Giolitti (Instituto Nacional de Tecnología Agropecuaria) for their assistance in collecting lucerne field samples. This research was jointly supported by the Queensland Department of Agriculture and Fisheries and the University of Queensland (UQ) through the Queensland Alliance for Agriculture and Food Innovation, and by AgriFutures Australia project PRJ-009751. Samira Samarfard was supported by a living allowance scholarship from AgriFutures Australia and a tuition fee scholarship from UQ Graduate School.

Author contributions

SS, NEB, and RGD designed the study; SS performed the experiments and analyzed the data. SS drafted the manuscript and all authors edited and approved the final version.

Supplementary material

11262_2018_1563_MOESM1_ESM.docx (1.9 mb)
Supplementary Fig. S1 (DOCX 1932 KB)
11262_2018_1563_MOESM2_ESM.docx (176 kb)
Supplementary Fig. S2 (DOCX 175 KB)
11262_2018_1563_MOESM3_ESM.docx (16 kb)
Supplementary Table S1 (DOCX 15 KB)
11262_2018_1563_MOESM4_ESM.docx (15 kb)
Supplementary Table S2 (DOCX 15 KB)
11262_2018_1563_MOESM5_ESM.docx (13 kb)
Supplementary Table S3 (DOCX 13 KB)

References

  1. 1.
    J. Bouton, Crop Pasture Sci. 63, 95–106 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Radović, D. Sokolović, J. Marković, Biotechnol. Anim. Husb. 25, 465–475 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Mielmann, Br. Food J. 115, 590–600 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Lenardon, J. Perez Fernandez, D. Basigalup, Descubren una nueva enfermedad en alfalfa (INTA Informa, Buenos Aires, 2010), http://intainforma.inta.gov.ar/?p=2693
  5. 5.
    N. Bejerman, C. Nome, F. Giolitti, E. Kitajima, S. De Breuil, J.P. Fernández, D. Basigalup, M. Cornacchione, S. Lenardon, Plant Dis. 95, 771 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Bejerman, F. Giolitti, S. de Breuil, V. Trucco, C. Nome, S. Lenardon, R.G. Dietzgen, Virology 483, 275–283 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    V. Trucco, S. De Breuil, N. Bejerman, S. Lenardon, F. Giolitti, Virus Genes 48, 562–565 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    V. Trucco, S. De Breuil, N. Bejerman, S. Lenardon, F. Giolitti, Eur. J. Plant Pathol. 146, 207–212 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Bejerman, F. Giolitti, V. Trucco, S. De Breuil, R.G. Dietzgen, S. Lenardon, Arch. Virol. 161, 2029–2032 (2016)CrossRefPubMedGoogle Scholar
  10. 10.
    N. Bejerman, V. Trucco, S. De Breuil, P.R. Pardina, S. Lenardon, F. Giolitti, Arch. Virol. (2017).  https://doi.org/10.1007/s00705-017-3673-x Google Scholar
  11. 11.
    P. Bernardo, B. Muhire, S. Francois, M. Deshoux, P. Hartnady, K. Farkas, S. Kraberger, D. Filloux, E. Fernandez, S. Galzi, R. Ferdinand. M. Granier, A. Marais, P. Monge Blasco, T. Candresse, F. Escriu, A. Varsani, G.W. Harkins, D.P. Martin, P. Roumagnac, Virology 493, 142–153 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    P. Roumagnac, M. Granier, P. Bernardo, M. Deshoux, R. Ferdinand, S. Galzi, E. Fernandez, C. Julian, I. Abt, D. Filloux, J. Virol. 89, 9683–9688 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    L.G. Nemchinov, S.C. Grinstead, D.S. Mollov, Genome Announc. 5, e00531-17 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    G.K. Amarasinghe, Y. Bào, C.F. Basler, S. Bavari, M. Beer, N. Bejerman, K.R. Blasdell, et al., Arch. Virol. 8, 1–12 (2017)Google Scholar
  15. 15.
    N. Bejerman, K.S. Mann, R.G. Dietzgen, Virus Res. 224, 19–28 (2016)CrossRefPubMedGoogle Scholar
  16. 16.
    K.S. Mann, N. Bejerman, K.N. Johnson, R.G. Dietzgen, Virology 489, 20–33 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    J.J. Doyle, J.L. Doyle, Phytochem. Bull. 19, 11–15 (1987)Google Scholar
  18. 18.
    K. Tamura, G. Stecher, K. Tamura, Mol. Biol. Evol. 33, 1870–1874 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    D.P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinformatics 26, 2462–2463 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    P. Librado, J. Rozas, Bioinformatics 25, 1451–1452 (2009)CrossRefPubMedGoogle Scholar
  21. 21.
    S. Samarfard, N.E. Bejerman, M. Sharman, V. Trucco, F. Giolitti, R.G. Dietzgen, Australas. Plant Pathol. (2017).  https://doi.org/10.1007/s13313-017-0533-9 Google Scholar
  22. 22.
    M. Nei, T. Gojobori, Mol. Biol. Evol. 3, 418–426 (1986)PubMedGoogle Scholar
  23. 23.
    P.G. Pappi, V.I. Maliogka, G.D. Amoutzias, N.I. Katis, Arch. Virol. 161, 631–639 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    C.M. Higgins, W.L. Chang, S. Khan, J. Tang, C. Elliott, R.G. Dietzgen, Arch. Virol. 161, 269–277 (2016)CrossRefPubMedGoogle Scholar
  25. 25.
    P. Revill, X. Trinh, J. Dale, R. Harding, J. Gen. Virol. 86, 491–499 (2005)CrossRefPubMedGoogle Scholar
  26. 26.
    T.O. Ramalho, A.D.R. Figueira, R. Wang, O. Jones, L.E. Harris, M.M. Goodin, Arch Virol. 161, 335–343CrossRefPubMedGoogle Scholar
  27. 27.
    H. Kondo, K. Hirota, K. Maruyama, I.B. Andika, N. Suzuki, Virology 508, 18–25 (2017)CrossRefPubMedGoogle Scholar
  28. 28.
    B. Callaghan, R.G. Dietzgen, Arch. Virol. 150, 1661–1667 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    I.V. Kuzmin, I.S. Novella, R.G. Dietzgen, A. Padhi, C. Rupprecht, Infect. Genet. Evol. 9, 541–553 (2009)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandSt. LuciaAustralia
  2. 2.Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones AgropecuariasInstituto Nacional de Tecnología AgropecuariaCórdobaArgentina

Personalised recommendations