Virus Genes

, Volume 54, Issue 2, pp 199–214 | Cite as

s8ORF2 protein of infectious salmon anaemia virus is a RNA-silencing suppressor and interacts with Salmon salar Mov10 (SsMov10) of the host RNAi machinery

  • Vandana Thukral
  • Bhavna Varshney
  • Rimatulhana B. Ramly
  • Sanket S. Ponia
  • Sumona Karjee Mishra
  • Christel M. Olsen
  • Akhil C. Banerjea
  • Sunil K. Mukherjee
  • Rana Zaidi
  • Espen Rimstad
  • Sunil K. Lal
Article

Abstract

The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy. Like NS1 protein of Influenza A virus, s8ORF2 of ISAV is implicated in interferon antagonism and RNA-binding functions. In this study, we investigated the role of s8ORF2 in RNAi suppression in a well-established Agrobacterium transient suppression assay in stably silenced transgenic Nicotiana xanthi. In addition, s8ORF2 was identified as a novel interactor with SsMov10, a key molecule responsible for RISC assembly and maturation in the RNAi pathway. This study thus sheds light on a novel route undertaken by viral proteins in promoting viral growth, using the host RNAi machinery.

Keywords

Viral suppressor of RNA silencing Infectious Salmon Anaemia Virus Segment 8 Open Reading Frame 2 Salmon salar Mov10 SsMov10 

Notes

Acknowledgements

This research was funded by the Department of Biotechnology Indo-Norwegian grant, Govt. of India; the Indian Council for Medical Research fellowship for VT, research grant 183196/S40 from the Research Council of Norway, and internal funds from the School of Science, Monash University Malaysia. The authors are grateful for technical help from Stine Braaen.

Authors’ Contributions

SKL, ACB and SKM conceived, designed the experiments. VT and BV performed the EMSA experiments and analysed the results. VT designed and analysed Mutants in EMSA, GFP-reversal assay Phage display and Yeast two-hybrid analysis. VT has written the manuscript. SSP performed Dose-dependent analysis of the s8ORF2 protein, its NM-s8ORF2 mutant and other mutants. SKMi performed the experiment to establish s8ORF2 as a suppressor in GFP-silenced N. xanthi in Reversal of Silencing leaf assay. RBR performed and analysed fish cell studies and participated in writing the manuscript. CMO and ER planned the fish cell study and contributed to writing the manuscript. CMO analysed the EPC data and performed the WB and immunostaining concerning NM-s8ORF2. SKL, RZ, ACB and SKM helped in the analysis of the results and editing the manuscript. All co-authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    McCauley, J.W., Hongo, S., Kaverin, N.V., Kochs, G., Lamb, R.A., Matrosovich, M.N., Perez, D.R., Palese, P., Presti, R.M., Rimstad, E., Smith, G.J.D. Orthomyxoviridae. eds. by M.Q. King, Michael J. Adams, Eric B. Carstens, and Elliot J. Lefkowitz. Virus Taxonomy Classification and Nomenclature of Viruses Ninth Report of the International Committee on Taxonomy of Viruses Editors Andrew 2012. Elsevier 2012Google Scholar
  2. 2.
    O. Evensen, K.E. Thorud, Y.A. Olsen, A morphologic study of the gross and light microscopic lesions of infectious anaemia in Atlantic salmon (Salmo salar). Res. Vet. Sci. 51(2), 215–222 (1991)CrossRefPubMedGoogle Scholar
  3. 3.
    T. Hovland, A. Nylund, K. Watanabe, C. Endresen, Observation of infectious salmon anaemia virus in Atlantic salmon, Salmo salar L. J. Fish Dis. 17, 291–296 (1994)CrossRefGoogle Scholar
  4. 4.
    K.E. Thorud, H.O. Djupvik, Infectious salmon anemia in Atlantic salmon (Salmo salar L.). Bull. Eur. Assoc. Fish Pathol. 8, 109–111 (1988)Google Scholar
  5. 5.
    S.C. Clouthier, T. Rector, N.E. Brown, E.D. Anderson, Genomic organization of infectious salmon anaemia virus. J. Gen. Virol. 83(Pt 2), 421–428 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    K. Falk, V. Aspehaug, R. Vlasak, C. Endresen, Identification and characterization of viral structural proteins of infectious salmon anemia virus. J. Virol. 78(6), 3063–3071 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    S. Mjaaland, E. Rimstad, K. Falk, B.H. Dannevig, Genomic characterization of the virus causing infectious salmon anemia in Atlantic salmon (Salmo salar L.): an orthomyxo-like virus in a teleost. J. Virol. 71(10), 7681–7686 (1997)PubMedPubMedCentralGoogle Scholar
  8. 8.
    E. Garcia-Rosado, T. Markussen, Ø. Kileng, E.S. Baekkevold, B. Robertsen, S. Mjaaland, E. Rimstad, Molecular and functional characterization of two infectious salmon anaemia virus (ISAV) proteins with type I interferon antagonizing activity. Virus Res. 133(2), 228–238 (2008).  https://doi.org/10.1016/j.virusres.2008.01.008 CrossRefPubMedGoogle Scholar
  9. 9.
    E. Bierin, K. Falk, E. Hoel, J. Thevarajan, M. Joerink, A. Nylund, C. Endresen, B. Krossøyl, Segment 8 encodes a structural protein of infectious salmon anaemia virus (ISAV); the co-linear transcript from segment 7 probably encodes a non-structural or minor structural protein. Dis. Aquat. Organ. 49(2), 117–122 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    C. Wilkins, R. Dishongh, S.C. Moore, M.A. Whitt, M. Chow, K. Machaca, RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature. 436(7053), 1044–1047 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    H. Bohle, N. Lorenzen, B.D. Schyth, Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNA) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV). Antiviral Res. 90(3), 187–194 (2011)CrossRefPubMedGoogle Scholar
  12. 12.
    C.D. Blair, Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 6(3), 265–277 (2011). Review CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ø. Kileng, M.I. Brundtland, B. Robertsen, Infectious salmon anemia virus is a powerful inducer of key genes of the type I interferon system of Atlantic salmon, but is not inhibited by interferon. Fish Shellfish Immunol. 23(2), 378–389 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Schütz, P. Sarnow, Interaction of viruses with the mammalian RNA interference pathway. Virol. 344(1), 151–157 (2006). Review CrossRefGoogle Scholar
  15. 15.
    P. Wieczorek, A. Obrępalska-Stęplowska, Suppress to Survive-Implication of Plant Viruses in PTGS. Plant Mol. Biol. Report. 33(3), 335–346 (2015). Review CrossRefPubMedGoogle Scholar
  16. 16.
    C. Li, L. Greiner-Tollersrud, B. Robertsen, Infectious salmon anemia virus segment 7 ORF1 and segment 8 ORF2 proteins inhibit IRF mediated activation of the Atlantic salmon IFNa1 promoter. Fish Shellfish Immunol. 52, 258–262 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    R.E. Randall, S. Goodbourn, Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen. Virol. 89(Pt 1), 1–47 (2008). Review CrossRefPubMedGoogle Scholar
  18. 18.
    A.J. Hamilton, D.C. Baulcombe, A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 286(5441), 950–952 (1999)CrossRefPubMedGoogle Scholar
  19. 19.
    S.M. Hammond, E. Bernstein, D. Beach, G.J. Hannon, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 404(6775), 293–296 (2000)CrossRefPubMedGoogle Scholar
  20. 20.
    P.V. Maillard, C. Ciaudo, A. Marchais, Y. Li, F. Jay, S.W. Ding, O. Voinnet, Antiviral RNA interference in mammalian cells. Science. 342(6155), 235–238 (2013)CrossRefPubMedGoogle Scholar
  21. 21.
    T.P. Chendrimada, R.I. Gregory, E. Kumaraswamy, J. Norman, N. Cooch, K. Nishikura, R. Shiekhattar, TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436(7051), 740–744 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    B.A. Janowski, K.E. Huffman, J.C. Schwartz, R. Ram, R. Nordsell, D.S. Shames, J.D. Minna, D.R. Corey, Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13(9), 787–792 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    P.D. Zamore, T. Tuschl, P.A. Sharp, D.P. Bartel, RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 101(1), 25–33 (2000)CrossRefPubMedGoogle Scholar
  24. 24.
    B. Berkhout, J. Haasnoot, The interplay between virus infection and the cellular RNA interference machinery. FEBS Lett. 580(12), 2896–2902 (2006). Review CrossRefPubMedGoogle Scholar
  25. 25.
    L. Song, S. Gao, W. Jiang, S. Chen, Y. Liu et al., Silencing suppressors: viral weapons for countering host cell defenses. Protein Cell. 2, 273–281 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    P.C. Haasnoot, D. Cupac, B. Berkhout, Inhibition of virus replication by RNA interference. J. Biomed. Sci. 10(6 Pt 1), 607–616 (2003). Review CrossRefPubMedGoogle Scholar
  27. 27.
    D. Silhavy, J. Burgyan, Effects and side-effects of viral silencing suppressors on short RNAs. Trends Plant Sci. 9(2), 76–83 (2004). Review CrossRefPubMedGoogle Scholar
  28. 28.
    W. de Vries, B. Berkhout, RNAi suppressors encoded by pathogenic human viruses. Int. J. Biochem. Cell Biol. 40(10), 2007–2012 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    G. Fabozzi, C.S. Nabel, M.A. Dolan, N.J. Sullivan, Ebolavirus proteins suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. J. Virol. 85(6), 2512–2523 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    J. Haasnoot, W. de Vries, E.J. Geutjes, M. Prins, P. de Haan, B. Berkhout, The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog. 3(6), e86 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    W.X. Li, H. Li, R. Lu, F. Li, M. Dus, P. Atkinson, E.W. Brydon, K.L. Johnson, A. García-Sastre, L.A. Ball, P. Palese, S.W. Ding, Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA. 101(5), 1350–1355 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    S. Qian, X. Zhong, L. Yu, B. Ding, P. de Haan, K. Boris-Lawrie, HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proc. Natl. Acad. Sci. USA. 106(2), 605–610 (2009).  https://doi.org/10.1073/pnas.0806822106 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    B.J. Fenner, W. Goh, J. Kwang, Sequestration and protection of double-stranded RNA by the betanodavirus b2 protein. J. Virol. 80(14), 6822–6833 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    T. Iwamoto, K. Mise, A. Takeda, Y. Okinaka, K. Mori, M. Arimoto, T. Okuno, T. Nakai, Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J. Gen. Virol. 86(Pt10), 2807–2816 (2005)CrossRefPubMedGoogle Scholar
  35. 35.
    M.C. Ou, Y.M. Chen, M.F. Jeng, C.J. Chu, H.L. Yang, T.Y. Chen, Identification of critical residues in nervous necrosis virus B2 for dsRNA-binding and RNAi-inhibiting activity through by bioinformatic analysis and mutagenesis. Biochem. Biophys. Res. Commun. 361(3), 634–640 (2007)CrossRefPubMedGoogle Scholar
  36. 36.
    S. Karjee, A. Minhas, V. Sood, S.S. Ponia, A.C. Banerjea, V.T. Chow, S.K. Mukherjee, S.K. Lal, The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor. J. Virol. 84(19), 10395–10401 (2010).  https://doi.org/10.1128/JVI.00748-10 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    G. Singh, S. Popli, Y. Hari, P. Malhotra, S. Mukherjee, R.K. Bhatnagar, Suppression of RNA silencing by Flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. FASEB J. 23(6), 1845–1857 (2009)CrossRefPubMedGoogle Scholar
  38. 38.
    W. Wang, K. Riedel, P. Lynch, C.Y. Chien, G.T. Montelione, R.M. Krug, RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA. 5(2), 195–205 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    P. James, J. Haliaday, E.A. Craig, Genomic libraries and a host strain designed for highly efficient two hybrid selection in yeast. Genetics. 144, 1425–1436 (1996)Google Scholar
  40. 40.
    H.I. Wergeland, R.A. Jakobsen, A salmonid cell line (TO) for production of infectious salmon anaemia virus ISAV. Dis. Aquat. Org. 44(3), 183–190 (2001)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Løvoll, L. Austbø, J.B. Jørgensen, E. Rimstad, P. Frost, Transcription of reference genes used for quantitative RT-PCR in Atlantic salmon is affected by viral infection. Vet. Res. 42, 8 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    P.A. Olsvik, K.K. Lie, A.E. Jordal, T.O. Nilsen, I. Hordvik, Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic Salmon. BMC Mol. Biol. 6, 21 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    G. Brigneti, O. Voinnet, W.X. Li, L.H. Ji, S.W. Ding, D.C. Baulcombe, Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17(22), 6739–6746 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    T.M. Burch-Smith, J.C. Anderson, G.B. Martin, S.P. Dinesh-Kumar, Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39(5), 734–746 (2004). Review CrossRefPubMedGoogle Scholar
  45. 45.
    M.G. Andersson, P.C. Haasnoot, N. Xu, S. Berenjian, B. Berkhout, G. Akusjärvi, Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol. 79(15), 9556–9565 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    S. Lu, B.R. Cullen, Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J. Virol. 78(23), 12868–12876 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    P. Chellappan, R. Vanitharani, C.M. Fauquet, MicroRNA-binding viral protein interferes with Arabidopsis development. Proc. Natl. Acad. Sci. USA. 102(29), 10381–10386 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    L. Wang, S.J. Brown, BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res. 34, W243–W248 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    S.S. Ponia, S. Arora, B. Kumar, A.C. Banerjea, Arginine rich short linear motif of HIV-1 regulatory proteins inhibits dicer dependent RNA interference. Retrovirol. 11(10), 97 (2013)CrossRefGoogle Scholar
  50. 50.
    E.Z. Szabó, M. Manczinger, A. Göblös, L. Kemény, L. Lakatos, Switching on RNA silencing suppressor activity by restoring argonaute binding to a viral protein. J. Virol. 86(15), 8324–8327 (2012).  https://doi.org/10.1128/JVI.00627-12 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    V. Furtak, A. Mulky, S.A. Rawlings, L. Kozhaya, K. Lee, V.N. Kewalramani, D. Unutmaz, Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS ONE. 5(2), e9081 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    J.L. Goodier, L.E. Cheung, H.H. Kazazian Jr., MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8(10), e1002941 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    J. Zhang, F. Huang, L. Tan, C. Bai, B. Chen, J. Liu, J. Liang, C. Liu, S. Zhang, G. Lu, Y. Chen, H. Zhang, Host protein moloney leukemia virus 10 (MOV10) acts as a restriction factor of influenza a virus by inhibiting the nuclear import of the viral nucleoprotein. J. Virol. 90(8), 3966–3980 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    B.R. Cullen, RNA interference in mammals: the virus strikes back. Immunity. 46(6), 970–972 (2017)CrossRefPubMedGoogle Scholar
  55. 55.
    O. Voinnet, C. Lederer, D.C. Baulcombe, A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell. 103(1), 157–167 (2000)CrossRefPubMedGoogle Scholar
  56. 56.
    Y.H. Han, Y.J. Luo, Q. Wu, J. Jovel, X.H. Wang, R. Aliyari, C. Han, W.X. Li, S.W. Ding, RNA-based immunity terminates viral infection in adult Drosophila in the absence of viral suppression of RNA interference: characterization of viral small interfering RNA populations in wild-type and mutant flies. J. Virol. 85(24), 13153–13163 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    M.O. Delgadillo, P. Sáenz, B. Salvador, J.A. García, C. Simon-Mateo, Human influenza enhances viral protein NS1 virus pathogenicity and acts as an RNA silencing suppressor in plants. J Gen. Virol. 85(Pt 4), 993–999 (2004)CrossRefPubMedGoogle Scholar
  58. 58.
    C.M. Olsen, T. Markussen, B. Thiede, E. Rimstad, Infectious salmon anaemia virus (ISAV) RNA binding protein encoded by segment 8 ORF2 and its interaction with ISAV and intracellular proteins. Viruses. 8(2), 52 (2016).  https://doi.org/10.3390/v8020052 CrossRefPubMedCentralGoogle Scholar
  59. 59.
    H. Yuwen, J.H. Cox, J.W. Yewdell, J.R. Bennink, B. Moss, Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology. 195(2), 732–744 (1993)CrossRefPubMedGoogle Scholar
  60. 60.
    J.M. Vargason, G. Szittya, J. Burgyán, T.M. Hall, Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115(7), 799–811 (2003)CrossRefPubMedGoogle Scholar
  61. 61.
    K. Ye, L. Malinina, D.J. Patel, Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature. 426(6968), 874–878 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    H. Wang, L. Chang, X. Wang, A. Su, C. Feng, Y. Fu, D. Chen, N. Zheng, Z. Wu, MOV10 interacts with Enterovirus 71 genomic 5′UTR and modulates viral replication. Biochem. Biophys. Res. Commun. 479(3), 571–577 (2016).  https://doi.org/10.1016/j.bbrc.2016.09.112 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Vandana Thukral
    • 1
  • Bhavna Varshney
    • 1
  • Rimatulhana B. Ramly
    • 2
  • Sanket S. Ponia
    • 3
  • Sumona Karjee Mishra
    • 1
    • 6
  • Christel M. Olsen
    • 2
  • Akhil C. Banerjea
    • 3
  • Sunil K. Mukherjee
    • 1
  • Rana Zaidi
    • 4
  • Espen Rimstad
    • 2
  • Sunil K. Lal
    • 1
    • 5
  1. 1.Virology & Plant Molecular Biology GroupsInternational Center for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Norwegian University of Life ScienceOsloNorway
  3. 3.Department of VirologyNational Institute of ImmunologyNew DelhiIndia
  4. 4.Department of Biochemistry, Faculty of ScienceJamia HamdardNew DelhiIndia
  5. 5.School of ScienceMonash UniversitySelangorMalaysia
  6. 6.Prantae Solutions Pvt. Ltd.BhubaneswarIndia

Personalised recommendations