Advertisement

Virus Genes

, Volume 54, Issue 1, pp 130–139 | Cite as

Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity

  • Martin Benešík
  • Jiří Nováček
  • Lubomír Janda
  • Radka Dopitová
  • Markéta Pernisová
  • Kateřina Melková
  • Lenka Tišáková
  • Jiří Doškař
  • Lukáš Žídek
  • Jan Hejátko
  • Roman PantůčekEmail author
Article

Abstract

The spontaneous host-range mutants 812F1 and K1/420 are derived from polyvalent phage 812 that is almost identical to phage K, belonging to family Myoviridae and genus Kayvirus. Phage K1/420 is used for the phage therapy of staphylococcal infections. Endolysin of these mutants designated LysF1, consisting of an N-terminal cysteine-histidine-dependent aminohydrolase/peptidase (CHAP) domain and C-terminal SH3b cell wall-binding domain, has deleted middle amidase domain compared to wild-type endolysin. In this work, LysF1 and both its domains were prepared as recombinant proteins and their function was analyzed. LysF1 had an antimicrobial effect on 31 Staphylococcus species of the 43 tested. SH3b domain influenced antimicrobial activity of LysF1, since the lytic activity of the truncated variant containing the CHAP domain alone was decreased. The results of a co-sedimentation assay of SH3b domain showed that it was able to bind to three types of purified staphylococcal peptidoglycan 11.2, 11.3, and 11.8 that differ in their peptide bridge, but also to the peptidoglycan type 11.5 of Streptococcus uberis, and this capability was verified in vivo using the fusion protein with GFP and fluorescence microscopy. Using several different approaches, including NMR, we have not confirmed the previously proposed interaction of the SH3b domain with the pentaglycine bridge in the bacterial cell wall. The new naturally raised deletion mutant endolysin LysF1 is smaller than LysK, has a broad lytic spectrum, and therefore is an appropriate enzyme for practical use. The binding spectrum of SH3b domain covering all known staphylococcal peptidoglycan types is a promising feature for creating new chimeolysins by combining it with more effective catalytic domains.

Keywords

Staphylococcus bacteriophage Endolysin Endopeptidases Enzybiotics Src homology domains Staphylococcal infections 

Notes

Acknowledgements

We wish to thank Š. Kobzová (CEITEC - Masaryk University) for the purification of lytic enzymes.

Funding

This work was supported by the Ministry of Health of the Czech Republic (Grant No. NT16-29916A) and in part by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) under the National Sustainability Programme II, project CEITEC 2020 (LQ1601). CIISB research infrastructure projects LM2015043 and LM2015062 funded by MEYS CR are gratefully acknowledged for a partial financial support of the measurements at the Josef Dadok National NMR Centre and the Czech-BioImaging Centre, CEITEC - Masaryk University.

Author’s contribution

MB, LJ, LZ, and RP participated in the design of the study. MB carried out phage genome sequencing, phage typing, susceptibility testing, and binding experiments. MB, RD, KM, LT, JH carried out the gene cloning and protein preparation. JN and LZ carried out the NMR experiments and analyzed the data. MB and MP performed the fluorescence microscopy. MB, JN, JD, and RP wrote the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11262_2017_1507_MOESM1_ESM.pdf (4.6 mb)
Supplementary material 1 (PDF 4698 kb)

References

  1. 1.
    P. Bárdy, R. Pantůček, M. Benešík, J. Doškař, J. Appl. Microbiol. 121(3), 618–633 (2016)CrossRefPubMedGoogle Scholar
  2. 2.
    M.J. Adams, E.J. Lefkowitz, A.M. King, B. Harrach, R.L. Harrison, N.J. Knowles, A.M. Kropinski, M. Krupovic, J.H. Kuhn, A.R. Mushegian, M. Nibert, S. Sabanadzovic, H. Sanfacon, S.G. Siddell, P. Simmonds, A. Varsani, F.M. Zerbini, A.E. Gorbalenya, A.J. Davison, Arch. Virol. 161(10), 2921–2949 (2016)CrossRefPubMedGoogle Scholar
  3. 3.
    R. Pantůček, A. Rosypalová, J. Doškař, J. Kailerová, V. Růžičková, P. Borecká, S. Snopková, R. Horváth, F. Götz, S. Rosypal, Virology 246(2), 241–252 (1998)CrossRefPubMedGoogle Scholar
  4. 4.
    S. O’Flaherty, R.P. Ross, W. Meaney, G.F. Fitzgerald, M.F. Elbreki, A. Coffey, Appl. Environ. Microbiol. 71(4), 1836–1842 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    L. Kvachadze, N. Balarjishvili, T. Meskhi, E. Tevdoradze, N. Skhirtladze, T. Pataridze, R. Adamia, T. Topuria, E. Kutter, C. Rohde, M. Kutateladze, Microb. Biotechnol. 4(5), 643–650 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    K. Vandersteegen, W. Mattheus, P.J. Ceyssens, F. Bilocq, D. De Vos, J.P. Pirnay, J.P. Noben, M. Merabishvili, U. Lipinska, K. Hermans, R. Lavigne, PLoS ONE 6(9), e24418 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Z. Cui, X. Guo, K. Dong, Y. Zhang, Q. Li, Y. Zhu, L. Zeng, R. Tang, L. Li, Sci. Rep 7, 41259 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    M. Lobocka, M.S. Hejnowicz, K. Dabrowski, A. Gozdek, J. Kosakowski, M. Witkowska, M.I. Ulatowska, B. Weber-Dabrowska, M. Kwiatek, S. Parasion, J. Gawor, H. Kosowska, A. Glowacka, Adv. Virus Res. 83, 143–216 (2012)CrossRefPubMedGoogle Scholar
  9. 9.
    L. Eyer, R. Pantůček, Z. Zdráhal, H. Konečná, P. Kašpárek, V. Růžičková, L. Hernychová, J. Preisler, J. Doškař, Proteomics 7(1), 64–72 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    J. Nováček, M. Šiborová, M. Benešík, R. Pantůček, J. Doškař, P. Plevka, Proc. Natl. Acad. Sci. USA 113(33), 9351–9356 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    V.A. Fischetti, in Enzybiotics, ed. by T.G. Villa, P. Veiga-Crespo (Wiley, New Jersy, 2009), pp. 107–122Google Scholar
  12. 12.
    S.C. Becker, S. Dong, J.R. Baker, J. Foster-Frey, D.G. Pritchard, D.M. Donovan, FEMS Microbiol. Lett. 294(1), 52–60 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    M. Sanz-Gaitero, R. Keary, C. Garcia-Doval, A. Coffey, M.J. van Raaij, Virol. J. 11, 133 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    M. Horgan, G. O’Flynn, J. Garry, J. Cooney, A. Coffey, G.F. Fitzgerald, R.P. Ross, O. McAuliffe, Appl. Environ. Microbiol. 75(3), 872–874 (2009)CrossRefPubMedGoogle Scholar
  15. 15.
    D.M. Donovan, S. Dong, W. Garrett, G.M. Rousseau, S. Moineau, D.G. Pritchard, Appl. Environ. Microbiol. 72(4), 2988–2996 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    S. Manoharadas, A. Witte, U. Blasi, J. Biotechnol. 139(1), 118–123 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    L.Y. Filatova, D.M. Donovan, N.T. Ishnazarova, J.A. Foster-Frey, S.C. Becker, V.G. Pugachev, N.G. Balabushevich, N.F. Dmitrieva, N.L. Klyachko, Appl. Biochem. Biotechnol. 180(3), 544–557 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    S.C. Becker, J. Foster-Frey, A.J. Stodola, D. Anacker, D.M. Donovan, Gene 443(1–2), 32–41 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    S.C. Becker, S. Swift, O. Korobova, N. Schischkova, P. Kopylov, D.M. Donovan, I. Abaev, FEMS Microbiol. Lett. 362(1), 1–8 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    J. Bai, Y.T. Kim, S. Ryu, J.H. Lee, Front. Microbiol. 7, 474 (2016)PubMedPubMedCentralGoogle Scholar
  21. 21.
    J. Yu, Y. Zhang, Y. Zhang, H. Li, H. Yang, H. Wei, Biosens. Bioelectron. 77, 366–371 (2016)CrossRefPubMedGoogle Scholar
  22. 22.
    J.Z. Lu, T. Fujiwara, H. Komatsuzawa, M. Sugai, J. Sakon, J. Biol. Chem. 281(1), 549–558 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    I. Sabala, E. Jagielska, P.T. Bardelang, H. Czapinska, S.O. Dahms, J.A. Sharpe, R. James, M.E. Than, N.R. Thomas, M. Bochtler, FEBS J. 281(18), 4112–4122 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    A. Grundling, O. Schneewind, J. Bacteriol. 188(7), 2463–2472 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    J. Gu, Y. Feng, X. Feng, C. Sun, L. Lei, W. Ding, F. Niu, L. Jiao, M. Yang, Y. Li, X. Liu, J. Song, Z. Cui, D. Han, C. Du, Y. Yang, S. Ouyang, Z.J. Liu, W. Han, PLoS Pathog. 10(5), e1004109 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    P. Kasparek, R. Pantucek, J. Kahankova, V. Ruzickova, J. Doskar, Folia Microbiol. 52(4), 331–338 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Doškař, P. Pallová, R. Pantůček, S. Rosypal, V. Růžičková, P. Pantůčková, J. Kailerová, K. Klepárník, Z. Malá, P. Boček, Can. J. Microbiol. 46(11), 1066–1076 (2000)CrossRefPubMedGoogle Scholar
  28. 28.
    A.V. Lukashin, M. Borodovsky, Nucleic Acids Res. 26(4), 1107–1115 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    A. Mitchell, H.Y. Chang, L. Daugherty, M. Fraser, S. Hunter, R. Lopez, C. McAnulla, C. McMenamin, G. Nuka, S. Pesseat, A. Sangrador-Vegas, M. Scheremetjew, C. Rato, S.Y. Yong, A. Bateman, M. Punta, T.K. Attwood, C.J. Sigrist, N. Redaschi, C. Rivoire, I. Xenarios, D. Kahn, D. Guyot, P. Bork, I. Letunic, J. Gough, M. Oates, D. Haft, H. Huang, D.A. Natale, C.H. Wu, C. Orengo, I. Sillitoe, H. Mi, P.D. Thomas, R.D. Finn, Nucleic Acids Res. 43, D213–221 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    V.V. Rogov, A. Rozenknop, N.Y. Rogova, F. Lohr, S. Tikole, V. Jaravine, P. Guntert, I. Dikic, V. Dotsch, ChemBioChem 13(7), 959–963 (2012)CrossRefPubMedGoogle Scholar
  31. 31.
    L. Tišáková, B. Vidová, J. Farkašovská, A. Godány, FEMS Microbiol. Lett. 350(2), 199–208 (2014)CrossRefPubMedGoogle Scholar
  32. 32.
    U.B. Ericsson, B.M. Hallberg, G.T. Detitta, N. Dekker, P. Nordlund, Anal. Biochem. 357(2), 289–298 (2006)CrossRefPubMedGoogle Scholar
  33. 33.
    M. Sattler, J. Schleucher, C. Griesinger, Prog. Nucl. Mag. Res. Sp. 34(2), 93–158 (1999)CrossRefGoogle Scholar
  34. 34.
    F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, A. Bax, J. Biomol. NMR 6(3), 277–293 (1995)CrossRefPubMedGoogle Scholar
  35. 35.
    Y. Shen, F. Delaglio, G. Cornilescu, A. Bax, J. Biomol. NMR 44(4), 213–223 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    J.J. Gill, Genome Announc. 2(1), e01173 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    S. O’Flaherty, A. Coffey, R. Edwards, W. Meaney, G.F. Fitzgerald, R.P. Ross, J. Bacteriol. 186(9), 2862–2871 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Y. Zhou, H. Zhang, H.D. Bao, X.M. Wang, R. Wang, Res. Vet. Sci. 111, 113–119 (2017)CrossRefPubMedGoogle Scholar
  39. 39.
    S.J. Labrie, J.E. Samson, S. Moineau, Nat. Rev. Microbiol. 8(5), 317–327 (2010)CrossRefPubMedGoogle Scholar
  40. 40.
    J. Gu, R. Lu, X. Liu, W. Han, L. Lei, Y. Gao, H. Zhao, Y. Li, Y. Diao, Curr. Microbiol. 63(6), 538–542 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    S. O’Flaherty, A. Coffey, W. Meaney, G.F. Fitzgerald, R.P. Ross, J. Bacteriol. 187(20), 7161–7164 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    M. Fenton, R.P. Ross, O. McAuliffe, J. O’Mahony, A. Coffey, J. Appl. Microbiol. 111(4), 1025–1035 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    P. Schumann, Methods Microbiol. 38, 101–129 (2011)CrossRefGoogle Scholar
  44. 44.
    M. Schmelcher, D.M. Donovan, M.J. Loessner, Future Microbiol. 7(10), 1147–1171 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    D. Gutierrez, Y. Briers, L. Rodriguez-Rubio, B. Martinez, A. Rodriguez, R. Lavigne, P. Garcia, Front. Microbiol. 6, 1315 (2015)PubMedPubMedCentralGoogle Scholar
  46. 46.
    L. Rodriguez-Rubio, B. Martinez, A. Rodriguez, D.M. Donovan, P. Garcia, Appl. Environ. Microbiol. 78(7), 2241–2248 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    J.Z. Mao, M. Schmelcher, W.J. Harty, J. Foster-Frey, D.M. Donovan, FEMS Microbiol. Lett. 342(1), 30–36 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    M. Fenton, R. Keary, O. McAuliffe, R.P. Ross, J. O’Mahony, A. Coffey, Int. J. Microbiol. 2013, 625341 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Martin Benešík
    • 1
  • Jiří Nováček
    • 2
  • Lubomír Janda
    • 2
  • Radka Dopitová
    • 2
    • 3
  • Markéta Pernisová
    • 2
    • 3
  • Kateřina Melková
    • 2
  • Lenka Tišáková
    • 4
  • Jiří Doškař
    • 1
  • Lukáš Žídek
    • 2
    • 3
  • Jan Hejátko
    • 2
    • 3
  • Roman Pantůček
    • 1
    Email author return OK on get
  1. 1.Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.CEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
  3. 3.National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  4. 4.Department of Biology, Faculty of Natural SciencesUniversity of Ss. Cyril and Methodius in TrnavaŠpačinceSlovak Republic

Personalised recommendations