Virus Genes

, Volume 53, Issue 4, pp 603–612 | Cite as

Deletion of the us7 and us8 genes of pseudorabies virus exerts a differential effect on the expression of early and late viral genes

  • Nándor Póka
  • Zsolt Csabai
  • Emese Pásti
  • Dóra Tombácz
  • Zsolt BoldogkőiEmail author


The pseudorabies virus (PRV; also known as Suid herpesvirus-1) is a neurotropic herpesvirus of swine. The us7 and us8 genes of this virus encode the glycoprotein I and E membrane proteins that form a heterodimer that is known to control cell-to-cell spread in tissue culture and in animals. In this study, we investigated the effect of the deletion of the PRV us7 and us8 genes on the genome-wide transcription and DNA replication using a multi-time-point quantitative reverse transcriptase-based real-time PCR technique. Abrogation of the us7/8 gene function was found to exert a drastic but differential effect on the expression of PRV genes during lytic infection. In the mutant virus, all kinetic classes of viral genes were significantly down-regulated at the first 6 h of infection, while having been upregulated later. The level of upregulation was the highest in the immediate-early (IE) and the early (E) genes; lower in the early-late (E/L) genes; and the lowest in the late (L) genes. The relative contribution of the L transcripts to the global transcriptome became lower, while the rest of the transcripts were expressed at a higher level in the mutant than in the wild-type virus.


Pseudorabies virus Herpesvirus Glycoprotein RT-PCR Transcriptome 



This research was supported by the Swiss-Hungarian Cooperation Programme, Grant No.: SH/7/2/8 to ZB and by the Bolyai János Scholarship of the Hungarian Academy of Sciences: 2015-18 to DT.

Author contributions

NP took part in PK-cell propagation, reverse transcription, and quantitative real-time PCR reactions, as well as data analysis. ZC performed reverse transcription and quantitative real-time PCR reactions. EP prepared the targeting plasmid. DT performed data analysis, drafted the manuscript, performed reverse transcription reactions and qPCR experiments. ZB coordinated the study, propagated viruses, generated the recombinant PRV, drafted and corrected the manuscript. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The author declares no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11262_2017_1465_MOESM1_ESM.tif (123 kb)
Supplementary material 1 (TIFF 122 kb)
11262_2017_1465_MOESM2_ESM.tif (348 kb)
Supplementary material 2 (TIFF 347 kb)
11262_2017_1465_MOESM3_ESM.tif (140 kb)
Supplementary material 3 (TIFF 140 kb)
11262_2017_1465_MOESM4_ESM.doc (84 kb)
Supplementary material 4 (DOC 83 kb)
11262_2017_1465_MOESM5_ESM.doc (611 kb)
Supplementary material 5 (DOC 611 kb)
11262_2017_1465_MOESM6_ESM.doc (31 kb)
Supplementary material 6 (DOC 31 kb)
11262_2017_1465_MOESM7_ESM.doc (26 kb)
Supplementary material 7 (DOC 25 kb)
11262_2017_1465_MOESM8_ESM.doc (186 kb)
Supplementary material 8 (DOC 186 kb)
11262_2017_1465_MOESM9_ESM.doc (28 kb)
Supplementary material 9 (DOC 28 kb)
11262_2017_1465_MOESM10_ESM.doc (52 kb)
Supplementary material 10 (DOC 52 kb)
11262_2017_1465_MOESM11_ESM.doc (33 kb)
Supplementary material 11 (DOC 33 kb)


  1. 1.
    A. Aujeszky, Veterinarius 25, 387–396 (1902)Google Scholar
  2. 2.
    P. Oláh, D. Tombácz, N. Póka, Z. Csabai, I. Prazsák, Z. Boldogkői, BMC Microbiol. (2015). doi: 10.1186/s12866-015-0470-0 PubMedPubMedCentralGoogle Scholar
  3. 3.
    D. Tombácz, Z. Csabai, P. Oláh, Z. Balázs, I. Likó, L. Zsigmond, D. Sharon, M. Snyder, Z. Boldogkoi, PLoS ONE (2016). doi: 10.1371/journal.pone.0162868 PubMedPubMedCentralGoogle Scholar
  4. 4.
    R.S. Tirabassi, R.A. Townley, M.G. Eldridge, L.W. Enquist, J. Virol. 71(9), 6455–6464 (1997)PubMedPubMedCentralGoogle Scholar
  5. 5.
    R.S. Tirabassi, L.W. Enquist, J. Virol. 72(6), 4571–4579 (1998)PubMedPubMedCentralGoogle Scholar
  6. 6.
    K.S. Dingwell, C.R. Brunetti, R.L. Hendricks, Q. Tang, M. Tang, A.J. Rainbow, D.C. Johnson, J. Virol. 68(2), 834–845 (1994)PubMedPubMedCentralGoogle Scholar
  7. 7.
    E. Maidji, S. Tugizov, T. Jones, Z. Zhenwei, L. Pereira, J. Virol. 70, 8402–8410 (1996)PubMedPubMedCentralGoogle Scholar
  8. 8.
    W. Mulder, J. Pol, T. Kimman, G. Kok, J. Priem, B. Peeters, J. Virol. 70, 2191–2200 (1996)PubMedPubMedCentralGoogle Scholar
  9. 9.
    C. Knapp, P.J. Husak, L.W. Enquist, J. Virol. 71(8), 5820–5827 (1997)PubMedPubMedCentralGoogle Scholar
  10. 10.
    D.C. Johnson, M. Webb, T.W. Wisner, J. Virol. 75(2), 821–833 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    L.W. Enquist, Semin. Virol. 5, 221–231 (1994)CrossRefGoogle Scholar
  12. 12.
    T.H. Chang, L.W. Enquist, J. Virol. 79(17), 10875–10889 (2005)CrossRefGoogle Scholar
  13. 13.
    N. Babic, T.C. Mettenleiter, G. Ugolini, A. Flamand, P. Coulon, Virology 204, 616–625 (1994)CrossRefPubMedGoogle Scholar
  14. 14.
    S.K. Kritas, M.B. Pensaert, T.C. Mettenleiter, Vet. Microbiol. 40, 323–334 (1994)CrossRefPubMedGoogle Scholar
  15. 15.
    R. Kratchmarov, T. Kramer, T.M. Greco, M.P. Taylor, T.H. Ch’ng, I.M. Cristea, L.W. Enquist, J. Virol. 87(17), 9431–9440 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    P.W. Howard, T.L. Howard, D.C. Johnson, J. Virol. 87(1), 403–414 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    A. Snyder, K. Polcicova, D.C. Johnson, J. Virol. 82(21), 10613–10624 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    R. Brack, B.G. Klupp, H. Granzow, R. Tirabassi, L.W. Enquist, T.C. Mettenleiter, J. Virol. 74(9), 4004–4016 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    L. Jacobs, Arch. Virol. 137, 209–228 (1994)CrossRefPubMedGoogle Scholar
  20. 20.
    Z. Gu, J. Dong, J. Wang, C. Hou, H. Sun, W. Yang, J. Bai, P. Jiang, Virus Res. (2014). doi: 10.1016/j.virusres PubMedCentralGoogle Scholar
  21. 21.
    C.Y. Wu, C.M. Liao, J.N. Chi, M.S. Chien, C. Huang, J. Biotechnol. (2016). doi: 10.1016/j.jbiotec.2016.05.009 PubMedCentralGoogle Scholar
  22. 22.
    J.P. Card, L.W. Enquist, Curr. Protoc. Neurosci. (2014). doi: 10.1002/0471142301.ns0105s68 PubMedPubMedCentralGoogle Scholar
  23. 23.
    M.I. Ekstrand, L.W. Enquist, L.E. Pomeranz, Trends Mol. Med. 14(3), 134–140 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Z. Boldogkoi, K. Balint, G.B. Awatramani, D. Balya, V. Busskamp, T.J. Viney, P.S. Lagali, J. Duebel, E. Pásti, D. Tombácz, J.S. Tóth, I.F. Takács, B.G. Scherf, B. Roska, Nat. Methods (2009). doi: 10.1038/nmeth.1292 PubMedGoogle Scholar
  25. 25.
    D. Tombácz, J.S. Tóth, P. Petrovszki, Z. Boldogkoi, BMC Genomics (2009). doi: 10.1186/1471-2164-10-491 PubMedPubMedCentralGoogle Scholar
  26. 26.
    J.S. Tóth, D. Tombácz, I.F. Takács, Z. Boldogkoi, BMC Microbiol. (2010). doi: 10.1186/1471-2180-10-311 PubMedPubMedCentralGoogle Scholar
  27. 27.
    D. Tombácz, J.S. Tóth, Z. Boldogkoi, Genomics (2011). doi: 10.1016/j.ygeno.2011.03.007 PubMedGoogle Scholar
  28. 28.
    D. Tombácz, J.S. Tóth, Z. Boldogkoi, Gene (2012). doi: 10.1016/j.gene.2011.11.049 Google Scholar
  29. 29.
    I.F. Takács, D. Tombácz, B. Berta, I. Prazsák, N. Póka, Z. Boldogkői, BMC Mol. Biol. (2013). doi: 10.1186/1471-2199-14-2 PubMedPubMedCentralGoogle Scholar
  30. 30.
    P. Mestdagh, P. Van Vlierberghe, A. De Weer, D. Muth, F. Westermann, F. Speleman, J. Vandesompele, Genome Biol. (2009). doi: 10.1186/gb-2009-10-6-r64 PubMedPubMedCentralGoogle Scholar
  31. 31.
    A.M. Campbell, L.J. Heyer, in Discovering Genomics Proteomics and Bioinformatics, ed. by S. Winslow (CSHL Press, San Francisco, 2007), pp. 238–241Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nándor Póka
    • 1
  • Zsolt Csabai
    • 1
  • Emese Pásti
    • 1
  • Dóra Tombácz
    • 1
  • Zsolt Boldogkői
    • 1
    Email author
  1. 1.Department of Medical Biology, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations