Virus Genes

, Volume 52, Issue 6, pp 900–905 | Cite as

Low genetic diversity of Banana bunchy top virus, with a sub-regional pattern of variation, in Democratic Republic of Congo

  • L. F. T. Mukwa
  • A. Gillis
  • V. Vanhese
  • G. Romay
  • S. Galzi
  • N. Laboureau
  • A. Kalonji-Mbuyi
  • M. L. Iskra-Caruana
  • C. Bragard
Article

Abstract

Banana bunchy top virus (BBTV), belonging to the genus Babuvirus, is the most devastating and widespread banana virus. Banana and plantain are major crops in terms of household income and food security in Democratic Republic of Congo (DRC). Despite the large area under banana and plantain cultivation in the country, before this study, the genetic characterization of BBTV isolates had only been undertaken for two provinces. In the study presented here, genetic variation in BBTV was assessed from 52 BBTV isolates collected in five out of 11 provinces in DRC (Bandundu, Bas-Congo, Katanga, Kinshasa and Kasaï Oriental) and in two provinces using sequences previously described in databases. Full genome sequencing of DNA-R components was performed, revealing low genetic variation (98–100 % nucleotide identity) among the BBTV isolates detected. The phylogenetic analyses showed that all the DRC isolates were clustered in the South Pacific clade of BBTV. Based on the coding region for the replication initiator protein, haplotype diversity was estimated to be 0.944 ± 0.013, with 30 haplotypes from 68 isolates in DRC. Such diversity shows a haplotype distribution mainly at the sub-regional level in DRC. In addition, the sequence determination from the whole genome of selected isolates confirmed low genetic variation among isolates from seven DRC provinces (97–100 % nucleotide identity). This study strengthened the hypothesis of a single BBTV introduction some time ago, followed by the spread of the virus in the country.

Keywords

Babuvirus Banana crops Democratic Republic of Congo Genetic diversity Nanoviridae 

Notes

Acknowledgments

The Belgian Agency of Development (CTB/BTC) funded this research work through a scholarship to LM. The authors are very grateful to Wallonie Bruxelles International (WBI), the BeCA-ILRI-Hub, the technicians in the 1/UMR-BGPI team, Campus International de Baillarguet, Cirad-Montpellier/France and Pierre Hellin at ELI/UCL, who contributed to the phylogenetic analysis.

Author’s contribution

CB, LFTM, MLIC and AKM conceived and designed the study. LFTM, VV, SG and NL performed research. GR, AG, CB, MLIC and LFTM analysed data. GR, LFTM, MLIC and C.B wrote the paper.

Supplementary material

11262_2016_1383_MOESM1_ESM.jpg (2 mb)
Supplementary material 1 (JPEG 2081 kb) Phylogenetic relationships of 98 complete DNA-R sequences of BBTV worldwide. Sequences retrieved from GenBank are identified by geographic origin and accession numbers. The tree was built using the neighbour-joining method. Bootstrap values (1,000 iterations) above 60% are indicated for each node. Abaca bunchy top virus (ABTV) was included as an outgroup. Branches in blue represent isolates from the South Pacific group (SPG) and branches in red represent isolates from the Asian group (AG).
11262_2016_1383_MOESM2_ESM.jpg (1.7 mb)
Supplementary material 2 (JPEG 1689 kb) Graphical representation of pairwise nucleotide sequence analysis of haplotypes based on the coding region from DNA-R components of African BBTV isolates. The colour scale bar indicates the percentage of nucleotide identity of haplotypes. Geographical origin was added to each haplotype.
11262_2016_1383_MOESM3_ESM.jpg (1.4 mb)
Supplementary material 3 (JPEG 1457 kb)
11262_2016_1383_MOESM4_ESM.doc (87 kb)
Supplementary material 4 (DOC 87 kb) Phylogenetic relationships of 51 fully sequenced genomes of BBTV worldwide. Sequences are identified by their geographic origin and isolate names in brackets. The phylogenetic tree was built using the neighbour-joining method. Bootstrap values (1,000 iterations) above 60% are indicated for each node. Abaca bunchy top virus (ABTV) was included as an outgroup. Branches in blue represent isolates from the South Pacific group (SPG) and branches in red represent isolates from the Asian group (AG). Isolates with black circles were sequenced in this study.
11262_2016_1383_MOESM5_ESM.doc (229 kb)
Supplementary material 5 (DOC 229 kb)

References

  1. 1.
    J. Qazi, Banana bunchy top virus and the bunchy top disease. J. Gen. Plant Pathol. 82, 2–11 (2016)CrossRefGoogle Scholar
  2. 2.
    A.P. Rybicki, A top ten list for economically important plant viruses. Arch. Virol. 160, 17–20 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    A. Banerjee, A. Roy, G.T. Behere, S.S. Roy, S.K. Dutta, S.V. Ngachan, Identification and characterization of a distinct Banana bunchy top virus isolate of Pacific-Indian Oceans group from North-East India. Virus Res. 183, 41–49 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    M.T. Burns, R.M. Hargind, J.L. Dale, The genome organization of banana bunchy top virus: analysis of six DNAss components. J. Gen. Virol. 76, 1471–1482 (1995)CrossRefPubMedGoogle Scholar
  5. 5.
    H.J. Vetten, J.L. Dale, I. Grigoras, B. Gronenborn, R. Harding, J.W. Randles, Y. Sano, J.E. Thomas, T. Timchenko, H.H. Yeh, in Virus taxonomy: ninth report of the international committee on taxonomy of viruses, ed. by A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz (Elsevier/Academic Press, Amsterdam, 2012), pp. 351–373Google Scholar
  6. 6.
    M.D. Anhalt, R.P. Almeida, Effect of temperature, vector life stage, and plant access period on transmission of banana bunchy top virus to banana. Phytopathology 98, 743–748 (2008)CrossRefPubMedGoogle Scholar
  7. 7.
    E.J.E. Buyckx (ed.), Précis des maladies et des insectes nuisibles rencontrés sur les plantes cultivées au Congo, au Rwanda et au Burundi (I.N.E.A.C, Leopoldville, 1962), pp. 457–459Google Scholar
  8. 8.
    L.P. Kumar, R. Hanna, O.J. Alabi, M.M. Soko, T.T. Oben, G.H.P. Vangu, R.A. Naidu, Banana bunchy top virus in sub-Saharan Africa: investigations on virus distribution and diversity. Virus Res. 159, 171–182 (2011)CrossRefPubMedGoogle Scholar
  9. 9.
    C. Niyongere, T. Losenge, M.E. Ateka, D. Nkezabahizi, G. Blomme, P. Lepoint, Occurrence and distribution of banana bunchy top disease in the great lakes region of Africa. Tree For. Sci. Biotech. 6, 102–107 (2012)Google Scholar
  10. 10.
    L.F.T. Mukwa, M. Muengula, I. Zinga, A. Kalonji, M.L. Iskra-Caruana, C. Bragard, Occurrence and distribution of banana bunchy top virus related agro-ecosystem in south western Democratic Republic of Congo. AJPS 5, 647–658 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Stainton, D. Martin, B. Muhire, S. Lolohea, M. Halafihi, P. Lepoint, G. Blomme, K.S. Crew, M. Sharman, S. Kraberger, A. Dayaram, M. Walters, D.A. Collings, B. Mabvakure, P. Lemey, G. Harkins, J.E. Thomas, A. Varsani, The global distribution of Banana bunchy top virus reveals little evidence for frequent recent, human-mediated long distance dispersal events. Virus Evol. (2015). doi: 10.1093/ve/vev009 PubMedPubMedCentralGoogle Scholar
  12. 12.
    B. Gronenborn, Nanoviruses: genome organisation and protein function. Vet. Microbiol. 98, 103–109 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    R.C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 1–19 (2004)CrossRefGoogle Scholar
  14. 14.
    B.M. Muhire, A. Varsani, D.P. Martin, SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9, e108277 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    P.S.L. Kosakovsky, S.D. Frost, S.V. Muse, HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Librado, J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009)CrossRefPubMedGoogle Scholar
  18. 18.
    D.P. Martin, B. Murrell, M. Golden, A. Khoosa, B. Muhire, RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. (2015). doi: 10.1093/ve/vev003 Google Scholar
  19. 19.
    M. Karan, R.M. Harding, J.L. Dale, Evidence for two groups of Banana bunchy top virus isolates. J. Gen. Virol. 75, 3541–3546 (1994)CrossRefPubMedGoogle Scholar
  20. 20.
    J.M. Hu, H.C. Fu, C.H. Lin, H.J. Su, H.H. Yeh, Re-assortment and concerted evolution in Banana bunchy top virus genomes. J. Virol. 81, 1746–1761 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    D. Stainton, S. Kraberger, M. Walters, J.E. Wiltshire, K. Rosario, M. Halafihi, S. Lolohea, I. Katoa, H.T. Faitua, W. Aholelei, L. Taufa, J.E. Thomas, D.A. Collings, D.P. Martin, A. Varsani, Evidence of inter-component recombination, intra-component recombination and reassortment in banana bunchy top virus. J. Gen. Virol. 93, 1103–1119 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    F.N. Boloy, B.I. Nkosi, J.K. Losimba, C.L. Bungamuzi, H.M. Siwako, F.W. Balowe, J.W. Lohaka, B.D. Djailo, P. Lepoint, C. Sivirihauma, G. Blomme, Assessing incidence, development and distribution of banana bunchy top disease across the main plantain and banana growing regions of the Democratic Republic of Congo. Afr. J. Agric. Res. 9, 2611–2623 (2014)CrossRefGoogle Scholar
  23. 23.
    C.W. Wardlaw (ed.), Banana diseases: including plantains and abaca (Longmans, London, 1961), pp. 68–115Google Scholar
  24. 24.
    G. Blomme, R. Ploetz, D. Jones, E. De Langhe, N. Price, C. Gold, A. Geereing, A. Viljoen, D. Karamura, M. Pillay, W. Tinzaara, P.Y. Teycheney, P. Lepoint, E. Karamura, I. Buddenhagen, A historical overview of the appearance and spread of Musa pests and pathogens on the African continent: highlighting the importance of clean Musa planting materials and quarantine measures. Ann. Appl. Biol. 162, 4–26 (2013)CrossRefGoogle Scholar
  25. 25.
    R.P. Almeida, G.M. Bennett, D.M. Anhalt, C.W. Tsai, P. O’Grady, Spread of an introduced vector-borne banana virus in Hawaii. Mol. Ecol. 18, 136–146 (2009)CrossRefPubMedGoogle Scholar
  26. 26.
    B.K. Bakelana, Évaluation et dissémination de cultivars améliorés de bananiers dans la province du Bas-Congo, RDC: résultats des activités des trois premières années. MusAfrica 2, 12–16 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. F. T. Mukwa
    • 1
    • 2
  • A. Gillis
    • 3
  • V. Vanhese
    • 1
  • G. Romay
    • 1
  • S. Galzi
    • 4
  • N. Laboureau
    • 4
  • A. Kalonji-Mbuyi
    • 2
    • 5
  • M. L. Iskra-Caruana
    • 4
  • C. Bragard
    • 1
    • 2
  1. 1.Applied Microbiology – Phytopathology , Earth and Life InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Clinique des Plantes de KinshasaKinshasaDemocratic Republic of Congo
  3. 3.Laboratory of Food and Environmental MicrobiologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.CIRAD, UMR BGPIMontpellier Cedex 5France
  5. 5.Faculté des Sciences Agronomiques de l’Université de KinshasaKinshasaDemocratic Republic of Congo

Personalised recommendations