Virus Genes

, Volume 52, Issue 6, pp 896–899 | Cite as

Genome sequence analysis of two South African isolates of Moroccan watermelon mosaic virus infecting cucurbits

  • Jacques Davy Ibaba
  • Mark D. Laing
  • Augustine GubbaEmail author


Moroccan watermelon mosaic virus (MWMV) has been prevalent in cucurbits in the Republic of South Africa (RSA) since it was first reported in 1987. However, full genome studies of the South African isolates have never been conducted previously. The full genome of two MWMV isolates infecting cucurbits (Cucurbita pepo L.) in the province of KwaZulu-Natal, RSA, was compared with the genome of the Tunisian isolate in this communication. The genome sequences of the RSA MWMV isolates were elucidated using next-generation sequencing and Sanger sequencing. The analyses performed included nucleotide and amino acid sequence comparison, determination of the genetic distances, detection of potential recombination, and phylogeny. The genome sequences of the RSA MWMV isolates were found to be 9719 nucleotides long, excluding the poly(A) tail. Sequence homology, genetic distances, and phylogenetic analyses indicated close relationships between the RSA isolates. This record will contribute to building up the MWMV isolate sequences from the different countries where the virus occurs, a useful step toward understanding MWMV evolution.


Potyvirus Phylogenomics ssRNA virus Next-generation sequencing Southern Africa Cucurbit 



The authors are grateful to Mr Jonathan Featherston and Ms Thulile Faith Nhlapo, from the ARC-BTP, for their technical guidance on NGS that they provided. Sanger Sequencing was performed at Inqaba Biotechnical Industries (Pty) Ltd (Pretoria, RSA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11262_2016_1372_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 46 kb)


  1. 1.
    J.D. Ibaba, M.D. Laing, A. Gubba, Crop. Prot. 75, 46–54 (2015). doi: 10.1016/j.cropro.2015.04.019 CrossRefGoogle Scholar
  2. 2.
    F.W. van der Meer, H.M. Garnett, J. Phytopathol. 120, 255–270 (1987). doi: 10.1111/j.1439-0434.1987.tb04440.x CrossRefGoogle Scholar
  3. 3.
    H. Lecoq and C. Desbiez, in Adv. Virus Res., edited by L. Gad L. Hervé (Academic Press, 2012), pp. 67-126. doi:
  4. 4.
    S. Yakoubi, C. Desbiez, H. Fakhfakh, C. Wipf-Scheibel, M. Marrakchi, H. Lecoq, Arch. Virol. 153, 117–125 (2008). doi: 10.1007/s00705-007-1074-2 CrossRefPubMedGoogle Scholar
  5. 5.
    N.M. McKern, P.M. Strike, O.W. Barnett, C.W. Ward, D.D. Shukla, Arch. Virol. 131, 467–473 (1993). doi: 10.1007/BF01378647 CrossRefPubMedGoogle Scholar
  6. 6.
    K.R. Cradock, M.D. Laing, J.V. da Graça, Rev. Mex. Fitopatol. 19, 251–252 (2001). (articulo.oa?id = 61219220) Google Scholar
  7. 7.
    W. Menzel, M. Abang, S. Winter, Arch. Virol. 156, 2309–2311 (2011). doi: 10.1007/s00705-011-1124-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Y. Arocha, N. Vigheri, B. Nkoy-Florent, K. Bakwanamaha, B. Bolomphety, M. Kasongo, P. Betts, W.A. Monger, V. Harju, R.A. Mumford, P. Jones, Plant. Pathol. 57, 387 (2008). doi: 10.1111/j.1365-3059.2007.01658.x CrossRefGoogle Scholar
  9. 9.
    A.T. Owolabi, F. Rabenstein, F. Ehrig, M. Maiss Edgar, H.J. Vetten, Int. J. Virol. 8, 258–270 (2012). doi: 10.3923/ijv.2012.258.270 CrossRefGoogle Scholar
  10. 10.
    H. Lecoq, G. Dafalla, C. Desbiez, C. Wipf-Scheibel, B. Delecolle, T. Lanina, Z. Ullah, R. Grumet, Plant. Dis. 85, 547–552 (2001). doi: 10.1094/pdis.2001.85.5.547 CrossRefGoogle Scholar
  11. 11.
    H. Lecoq, I. Justafre, C. Wipf-Scheibel, C. Desbiez, Plant. Pathol. 57, 766 (2008). doi: 10.1111/j.1365-3059.2008.01848.x CrossRefGoogle Scholar
  12. 12.
    I. Malandraki, N. Vassilakos, C. Xanthis, G. Kontosfiris, N.I. Katis, C. Varveri, Plant. Dis. 98, 702 (2013). doi: 10.1094/PDIS-10-13-1100-PDN CrossRefGoogle Scholar
  13. 13.
    P. Roggero, G. Dellavalle, V. Lisa, V.M. Stravato, Plant. Dis. 82, 351 (1998). doi: 10.1094/PDIS.1998.82.3.351B CrossRefGoogle Scholar
  14. 14.
    A.M. Bolger, M. Lohse, B. Usadel, Bioinformatics 30, 2114 (2014). doi: 10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, Mol. Biol. Evol. 30, 2725–2729 (2013). doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    K. Tamura, M. Nei, S. Kumar, Proc. Natl. Acad. Sci. USA. 101, 11030–11035 (2004). doi: 10.1073/pnas.0404206101 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    D.P. Martin, B. Murrell, M. Golden, A. Khoosal, B. Muhire, Virus. Evol. 1, vev003 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    G. Romay, H. Lecoq, C. Desbiez, Arch. Virol. 159, 277–289 (2014). doi: 10.1007/s00705-013-1798-0 CrossRefPubMedGoogle Scholar
  19. 19.
    S. Yakoubi, H. Lecoq, C. Desbiez, Virus. Genes. 37, 103–109 (2008). doi: 10.1007/s11262-008-0237-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jacques Davy Ibaba
    • 1
  • Mark D. Laing
    • 1
  • Augustine Gubba
    • 1
    Email author
  1. 1.Department of Plant Pathology, School of Agricultural, Earth and Environmental SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations