Virus Genes

, Volume 51, Issue 1, pp 45–50 | Cite as

Isolation of buffalo poxvirus from clinical case and variations in the genetics of the B5R gene over fifty passages

  • Mohsan Ullah Goraya
  • Zafar ul Ahsan Qureshi
  • Muhammad Abbas
  • Muhammad Ashraf
  • Muhammad Munir


Outbreaks of buffalopox affect udder and teats, which may ultimately lead to mastitis in dairy buffalo and can significantly compromise the production. In this study, we report isolation of buffalo poxvirus and sequence analysis of the B5R gene collected from the buffalo clinically suspected to be poxvirus infected. The virus was isolated on BHK-21 cell line and was passaged for 50 times, B5R gene was amplified and sequenced using gene-specific primers, and analyzed at both nucleotide and amino acid levels. Phylogenetically, the isolate can be classified close to the previously reported Pakistani and Indian isolates with certain level of differential clustering patterns. Three significant putative mutations (I2K, N64D, and K111E) were observed in the B5R protein. The K111E was common with previous human isolate from Karachi, Pakistan in 2005. These mutations differed from poxviruses reported from the neighboring countries. Some deletion mutations were observed which were recovered in upcoming passages. The K111E mutation suggests potential to cause zoonotic infection in human all over the country.


Buffalo poxvirus B5Rgene Zoonosis Host range Phylogeny 



All the authors contributed equally in the study and have no competing interest in the manuscript.


  1. 1.
    T.G. de Souza, F.G. da Fonseca, J.T. Marques, M.L. Nogueira, L.C. Mendes, Aracatuba virus: a vaccinialike virus associated with infection in humans and cattle. Emerg. Infect. Dis. 9, 155–160 (2003)CrossRefGoogle Scholar
  2. 2.
    G.S. Trindade, F.G. da Fonseca, J.T. Marques, M.L. Nogueira, L.C. Mendes, A.S. Borges, J.R. Peiró, E.M. Pituco, C.A. Bonjardim, P.C. Ferreira, E.G. Kroon, Araçatuba virus: a vaccinia-like virus associated with infection in humans and cattle. Emerg. Infect. Dis. 9(2), 155–160 (2003)CrossRefGoogle Scholar
  3. 3.
    V. Bhanuprakash, G. Venkatesan, V. Balamurugan, M. Hosamani, R. Yogisharadhya, P. Gandhale, K.V. Reddy, A.S. Damle, H.N. Kher, B.S. Chandel, H.C. Chauhan, R.K. Singh, Zoonotic infections of buffalopox in India. Zoonoses Public Health 57, 149–155 (2010)CrossRefGoogle Scholar
  4. 4.
    R.K. Singh, M. Hosamani, V. Balamurugan, V. Bhanuprakash, T.J. Rasool, M.P. Yadav, Buffalopox: an emerging and re-emerging zoonosis Ani. Health Res. Rev. 8(1), 105–114 (2007)CrossRefGoogle Scholar
  5. 5.
    R.K. Singh, M. Hosamani, V. Balamurugan, V. Bhanuprakash, T.J. Rasool, M.P. Yadav, Buffalopox: emerging and re-emerging zoonoses. Anim. Health Res. Rev. 8, 105–114 (2007)PubMedCrossRefGoogle Scholar
  6. 6.
    G.K. Sharma, An interesting outbreak of variola vaccinia in milch cattle of Lahore. Miscellaneous Bulletin Imp. Counc. Agri. Res. 8, 1–4 (1934)Google Scholar
  7. 7.
    A. Zafar, R. Swanepoel, R. Hewson, M. Nizam, A. Ahmed, A. Husain, A. Grobbelaar, K. Bewley, V. Mioulet, B. Dowsett, L. Easterbrook, R. Hasan, Nosocomial Buffalopoxvirus Infection, Karachi Pakistan. Emerg. Infect. Dis. 13(6), 902–904 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    M. Maqsood, Generalised buffalopox. Vet. Rec. 70, 321–322 (1958)Google Scholar
  9. 9.
    R. Chandra, I.P. Singh, S.K. Garg, K.C. Varshney, Experimental pathogenesis of buffalopox in rabbits. Acta Virol. 30, 390–395 (1986)PubMedGoogle Scholar
  10. 10.
    W.R. Cockrill, Buffalo production holds promise, in Dairy India, 5th edn., ed. by R.P. Gupta (Gupta R.P., New Delhi, 1997), p. 13Google Scholar
  11. 11.
    G. Venkatesan, V. Balamurugan, M. Prabhu, R. Yogisharadhya, D.P. Bora, P.N. Gandhale, M.S. Sankar, A.M. Kulkarni, R.K. Singh, V. Bhanuprakash, Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India. Vet. Ital. 46(4), 439–448 (2010)PubMedGoogle Scholar
  12. 12.
    F.A. Murphy, E.P.J. Gibbs, M.C. Horzinek, M.J. Studdert, Veterinary Virology, 3rd edn. (Academic, San Diego, 1999), pp. 277–291Google Scholar
  13. 13.
    A. McLysaght, P.F. Baldi, B.S. Gaut, Extensive gene gain associated with adaptive evolution of poxviruses. Proc. Natl. Acad. Sci. U.S.A. 100, 15655–15660 (2003)PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    E.J. Lefkowitz, C. Wang, C. Upton, Poxviruses: past, present, and future. Virus Res. 117, 105–118 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    A.L. Hughes, R. Friedman, Poxvirus genome evolution by gene gain and loss. Mol. Phylo. Evol. 35(1), 186–195 (2005)CrossRefGoogle Scholar
  16. 16.
    G.C. Katsafanas, B. Moss, Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2, 221–228 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    E.I. Skalinskii, K.H. Tantawi, Structure and morphogenesis of buffalo poxvirus. Veterinariya Mosc. 10, 62–64 (1974)Google Scholar
  18. 18.
    B.M. Ward, B. Moss, Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein. J. Virol. 74, 3771–3780 (2000)PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    L.G. Payne, Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 50, 89–100 (1980)PubMedCrossRefGoogle Scholar
  20. 20.
    S.N. Isaacs, E.J. Wolffe, L.G. Payne, B. Moss, Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66(12), 7217–7224 (1992)PubMedCentralPubMedGoogle Scholar
  21. 21.
    S.N. Isaacs, E.J. Wolffe, L.G. Payne, B. Moss, Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66, 7217–7224 (1992)PubMedCentralPubMedGoogle Scholar
  22. 22.
    S. Yadav, M. Hosamani, V. Balamurugan, V. Bhanuprakash, R.K. Singh, Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: evidence of buffalo pox virus circulation in Indian cows. Arch. Virol. 155, 255–261 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    A.L. Hughes, R. Friedman, Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol. Biol. Evol. 20, 979–987 (2003)PubMedCrossRefGoogle Scholar
  24. 24.
    A.L. Hughes, Origin and evolution of viral interleukin-10 and other DNA virus genes with vertebrate homologues. J. Mol. Evol. 54, 90–101 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    S.M. Lal, I.P. Singh, Buffalo pox a review. Trop. Anim. Health Prod. 9, 107–112 (1977)PubMedCrossRefGoogle Scholar
  26. 26.
    M. Munir, M. Cortey, M. Abbas, Z.U. Qureshi, F. Afzal, M.Z. Shabbir, M.T. Khan, S. Ahmed, S. Ahmad, C. Baule, Biological characterization and phylogenetic analysis of a novel genetic group of Newcastle disease virus isolated from outbreaks in commercial poultry and from backyard poultry flocks in Pakistan. Infect. Genet. Evol. 12, 1010–1019 (2012)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Munir, M.Z. Shabbir, T. Yaqub, M.A. Shabbir, N. Mukhtar, M.R. Khan, M. Berg, Complete genome sequence of a velogenic neurotropic avian paramyxovirus 1 isolated from peacocks (Pavocristatus) in a wildlife park in Pakistan. J. Virol. 86, 13113–13114 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    T. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999)Google Scholar
  29. 29.
    F. Ronquist, J.P. Huelsenbeck, MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)PubMedCrossRefGoogle Scholar
  30. 30.
    B.C. Bera, K. Shanmugasundaram, S. Barua, T. Anand, T. Riyesh, R.K. Vaid, N. Virmani, M. Bansal, B.N. Shukla, P. Malik, R.K. Singh, Sequence and phylogenetic analysis of host-range (E3L, K3L, and C7L) and structural protein (B5R) genes of buffalopox virus isolates from buffalo, cattle, and human in India. Virus Genes 45(3), 488–498 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohsan Ullah Goraya
    • 1
    • 2
  • Zafar ul Ahsan Qureshi
    • 3
  • Muhammad Abbas
    • 4
  • Muhammad Ashraf
    • 5
  • Muhammad Munir
    • 6
  1. 1.College of Animal SciencesFujain Agriculture and Forestry UniversityFuzhouChina
  2. 2.Uppsala UniversityUppsalaSweden
  3. 3.Veterinary Research InstituteLahorePakistan
  4. 4.Livestock and Dairy Development DepartmentGovernment of PunjabLahorePakistan
  5. 5.Institute of MicrobiologyUniversity of AgricultureFaisalabadPakistan
  6. 6.The Pirbright InstituteWokingUK

Personalised recommendations