Virus Genes

, Volume 50, Issue 3, pp 498–504 | Cite as

Fluorometric RdRp assay with self-priming RNA

  • Fatih Kocabas
  • Raife D. Turan
  • Galip S. Aslan


There is an outmost need for the identification of specific antiviral compounds. Current antivirals lack specificity, making them susceptible to off-target effects, and highlighting importance of development of assays to discover antivirals targeting viral specific proteins. Previous studies for identification of inhibitors of RNA-dependent RNA polymerase (RdRp) mostly relied on radioactive methods. This study describes a fluorometric approach to assess in vitro activity of viral RdRp for drug screening. Using readily available DNA- and RNA-specific fluorophores, we determined an optimum fluorometric approach that could be used in antiviral discovery specifically for RNA viruses by targeting RdRp. Here, we show that double-stranded RNA could be successfully distinguished from single-stranded RNA. In addition, we provide a strategy based on self-priming RNA to assess RdRp activity.

Graphical abstract


Viral RdRp RNA-dependent RNA polymerase Fluorometric RdRp assays dsRNA and ssRNA 



This study was funded by North American University, Houston, Texas, and Yeditepe University, Istanbul.

Conflict of interest

All authors declare that they have no conflicts of interest concerning this work.


  1. 1.
    M. Ackermann, R. Padmanabhan, De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J. Biol. Chem. 276, 39926–39937 (2001)CrossRefPubMedGoogle Scholar
  2. 2.
    D. Dhanak, K.J. Duffy, V.K. Johnston, J. Lin-Goerke, M. Darcy, A.N. Shaw et al., Identification and biological characterization of heterocyclic inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Biol. Chem. 277, 38322–38327 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    S. Steffens, H.J. Thiel, S.E. Behrens, The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro. J. Gen. Virol. 80(Pt 10), 2583–2590 (1999)PubMedGoogle Scholar
  4. 4.
    P. Niyomrattanakit, Y.-L.L. Chen, H. Dong, Z. Yin, M. Qing, J.F. Glickman et al., Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J. Virol. 84, 5678–5686 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Y.-G.G. Kim, J.-S.S. Yoo, J.-H.H. Kim, C.-M.M. Kim, J.-W.W. Oh, Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol. Biol. 8, 59 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    A. Ahmed-Belkacem, J.-F.F. Guichou, R. Brillet, N. Ahnou, E. Hernandez, C. Pallier et al., Inhibition of RNA binding to hepatitis C virus RNA-dependent RNA polymerase: a new mechanism for antiviral intervention. Nucleic Acids Res. 42, 9399–9409 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Y. Wen, C. Cheng, Kao, The hepatitis C virus core protein can modulate RNA-dependent RNA synthesis by the 2a polymerase. Virus Res. 189, 165–176 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    D. Nemecek, J.B. Heymann, J. Qiao, L. Mindich, A.C. Steven, Cryo-electron tomography of bacteriophage phi6 procapsids shows random occupancy of the binding sites for RNA polymerase and packaging NTPase. J. Struct. Biol. 171, 389–396 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    C.M. Joyce, T.A. Steitz, Polymerase structures and function: variations on a theme? J. Bacteriol. 177, 6321–6329 (1995)PubMedCentralPubMedGoogle Scholar
  10. 10.
    S. Bressanelli, L. Tomei, F.A. Rey, R. De Francesco, Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 76, 3482–3492 (2002)CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    S.J. Butcher, J.M. Grimes, E.V. Makeyev, D.H. Bamford, D.I. Stuart, A mechanism for initiating RNA-dependent RNA polymerization. Nature 410, 235–240 (2001)CrossRefPubMedGoogle Scholar
  12. 12.
    M.R. Laurila, E.V. Makeyev, D.H. Bamford, Bacteriophage phi6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J. Biol. Chem. 277, 17117–17124 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    T.P. Prakash, M. Prhavc, A.B. Eldrup, P.D. Cook, S.S. Carroll, D.B. Olsen et al., Synthesis and evaluation of S-acyl-2-thioethyl esters of modified nucleoside 5′-monophosphates as inhibitors of hepatitis C virus RNA replication. J. Med. Chem. 48, 1199–1210 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    R. Porecha, D. Herschlag, RNA radiolabeling. Methods Enzymol. 530, 255–279 (2013)PubMedGoogle Scholar
  15. 15.
    L. Lasecka, M.D. Baron, The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses. Arch. Virol. 159, 1249–1265 (2014)CrossRefPubMedGoogle Scholar
  16. 16.
    P. Niyomrattanakit, S.N. Abas, C.C. Lim, D. Beer, P.-Y.Y. Shi, Y.-L.L. Chen, A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase. J. Biomol. Screen. 16, 201–210 (2011)CrossRefPubMedGoogle Scholar
  17. 17.
    W. Vassiliou, J.B. Epp, B.B. Wang, A.M. Del Vecchio, T. Widlanski, C.C. Kao, Exploiting polymerase promiscuity: a simple colorimetric RNA polymerase assay. Virology 274, 429–437 (2000)CrossRefPubMedGoogle Scholar
  18. 18.
    C. Park, Y. Kee, J. Park, H. Myung, A nonisotopic assay method for hepatitis C virus NS5B polymerase. J. Virol. Methods 101, 211–214 (2002)CrossRefPubMedGoogle Scholar
  19. 19.
    F.C. Lahser, B.A. Malcolm, A continuous nonradioactive assay for RNA-dependent RNA polymerase activity. Anal. Biochem. 325, 247–254 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    A.I. Dragan, J.R. Casas-Finet, E.S. Bishop, R.J. Strouse, M.A. Schenerman, C.D. Geddes, Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys. J. 99, 3010–3019 (2010)CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fatih Kocabas
    • 1
    • 2
  • Raife D. Turan
    • 1
  • Galip S. Aslan
    • 1
  1. 1.Department of Genetics and Bioengineering, Faculty of EngineeringYeditepe UniversityIstanbulTurkey
  2. 2.Department of EducationNorth American UniversityHoustonUSA

Personalised recommendations