Virus Genes

, Volume 48, Issue 1, pp 1–14 | Cite as

Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges

  • Shunmugiah Veluchamy RameshEmail author
  • Milind B. Ratnaparkhe
  • Giriraj Kumawat
  • Girish Kumar Gupta
  • Syed Masroor Husain


MicroRNAs (miRNAs) are small regulatory RNAs that play a defining role in post-transcriptional gene silencing of eukaryotes by either mRNA cleavage or translational inhibition. Plant miRNAs have been implicated in innumerable growth and developmental processes that extend beyond their ability to respond to biotic and abiotic stresses. Active in an organism’s immune defence response, host miRNAs display a propensity to target viral genomes. During viral invasion, these virus-targeting miRNAs can be identified by their altered expression. All the while, pathogenic viruses, as a result of their long-term interaction with plants, have been evolving viral suppressors of RNA silencing (VSRs), as well as viral-encoded miRNAs as a counter-defence strategy. However, the gene silencing attribute of miRNAs has been ingeniously manipulated to down-regulate the expression of any gene of interest, including VSRs, in artificial miRNA (amiRNA)-based transgenics. Since we currently have a better understanding of the intricacies of miRNA-mediated gene regulation in plant–virus interactions, the majority of miRNAs manipulated to confer antiviral resistance to date are in plants. This review will share the insights gained from the studies of plant-virus combat and from the endeavour to manipulate miRNAs, including prospective challenges in the context of the evolutionary dynamics of the viral genome. Next generation sequencing technologies and bioinformatics analysis will further delineate the molecular details of host–virus interactions. The need for appropriate environmental risk assessment principles specific to amiRNA-based virus resistance is also discussed.


Artificial miRNA (amiRNA) Antiviral resistance Next generation sequencing (NGS) miRNA RNAi Viral suppressors 



Artificial miRNA


Dicer-like 1


Environmental risk assessment


Expressed sequence tag


Hairpin RNA


Intron-spliced hairpin RNA




Nucleotide binding site–leucine-rich repeat


Next generation sequencing


Non-coding RNAs


Precursor miRNA


Primary miRNA


RNA-induced silencing complex


Post-transcriptional gene silencing


RNA interference


Small interfering RNA


Single molecule real time


Transacting siRNA


Viral suppressors of RNA silencing


Virus resistant transgenic plants



The authors express their gratitude to Dr. S.K. Srivastava, Director, Directorate of Soybean Research, Indore, for providing amenities during the study. The work is an integral part of the Directorate’s Institute Research Council (IRC) approved project (Project ID: DSR 1.24/12).


  1. 1.
    B.J. Reinhart, E.G. Weinstein, M.W. Rhoades, B. Bartel, D.P. Bartel, MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002)PubMedGoogle Scholar
  2. 2.
    X. Chen, J. Liu, Y. Cheng, D. Jia, HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129, 1085–1094 (2002)PubMedGoogle Scholar
  3. 3.
    J.H. Clarke, D. Tack, K. Findlay, M. Van Montagu, M. Van Lijsebettens, The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis. Plant J. 20, 493–501 (1999)PubMedGoogle Scholar
  4. 4.
    C. Lu, N. Fedoroff, A mutation in the arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12, 2351–2365 (2000)PubMedCentralPubMedGoogle Scholar
  5. 5.
    M.D. Nodine, D.P. Bartel, MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 24, 2678–2692 (2010)PubMedGoogle Scholar
  6. 6.
    J.F. Palatnik, E. Allen, X. Wu, C. Schommer, R. Schwab, J.C. Carrington, D. Weigel, Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003)PubMedGoogle Scholar
  7. 7.
    Y. Wang, R. Blelloch, Cell cycle regulation by microRNAs in embryonic stem cells. Cancer Res. 69, 4093–4096 (2009)PubMedCentralPubMedGoogle Scholar
  8. 8.
    G. Wu, M.Y. Park, S.R. Conway, J.W. Wang, D. Weigel, R.S. Poethig, The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759 (2009)PubMedCentralPubMedGoogle Scholar
  9. 9.
    A.A. Millar, J.V. Jacobsen, J.J. Ross, C.A. Helliwell, A.T. Poole, G. Scofield, J.B. Reid, F. Gubler, Seed dormancy and ABA metabolism in Arabidopsis and Barley: the role of ABA 8′-hydroxylase. Plant J. 45, 942–954 (2006)PubMedGoogle Scholar
  10. 10.
    M.F. Wu, Q. Tian, J.W. Reed, Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133, 4211–4218 (2006)PubMedGoogle Scholar
  11. 11.
    L. Navarro, P. Dunoyer, F. Jay, B. Arnold, N. Dharmasiri, M. Estelle, O. Voinnet, J.D. Jones, A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006)PubMedGoogle Scholar
  12. 12.
    R. Sunkar, J. Zhu, Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001–2019 (2004)PubMedCentralPubMedGoogle Scholar
  13. 13.
    N. Sanan-Mishra, V. Kumar, S.K. Sopory, S.K. Mukherjee, Cloning and validation of novel miRNA from basmati rice indicates cross-talk between abiotic and biotic stresses. Mol. Genet. Genomics 282, 463–474 (2009)PubMedGoogle Scholar
  14. 14.
    J.C. Sanford, S.A. Johnston, The concept of pathogen derived resistance. J. Theor. Biol. 113, 395–405 (1985)Google Scholar
  15. 15.
    P.P. Abel, R.S. Nelson, B. De, N. Hoffmann, S.G. Rogers, R.T. Fraley, R.N. Beachy, Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232, 738–743 (1986)PubMedGoogle Scholar
  16. 16.
    J.A. Lindbo, L. Silva-Rosales, W.M. Proebsting, W.G. Dougherty, Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759 (1993)PubMedCentralPubMedGoogle Scholar
  17. 17.
    M. Prins, P. De Haan, R. Luyten, M. Van Veller, M.Q.J.M. Van Grinsven, R. Goldbach, Broad resistance to tospoviruses in transgenic plants by expressing three tospoviral nucleoprotein gene sequences. Mol. Plant Microbe Interact. 8, 85–91 (1995)PubMedGoogle Scholar
  18. 18.
    A.L. Jones, I.E. Johansen, S.J. Bean, I. Bach, A.J. Maule, Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J. Gen. Virol. 79, 3129–3137 (1998)PubMedGoogle Scholar
  19. 19.
    F. Tenllado, J.R. Dıaz-Ruız, Complete resistance to pepper mild mottle tobamovirus mediated by viral replicase sequences partially depends on transgene homozygosity and is based on a gene silencing mechanism. Transgenic Res. 8, 83–93 (1999)Google Scholar
  20. 20.
    K. Kalantidis, S. Psaradakis, M. Tabler, M. Tsagris, The occurrence of CMV specific short RNAs in transgenic tobacco expressing virus-derived double stranded RNA is indicative of resistance to the virus. Mol. Plant Microbe Interact. 15, 826–833 (2002)PubMedGoogle Scholar
  21. 21.
    S.W. Ding, O. Voinnet, Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007)PubMedCentralPubMedGoogle Scholar
  22. 22.
    R. Vanitharani, P. Chellappan, C.M. Fauquet, Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc. Natl. Acad. Sci. U.S.A. 100, 9632–9636 (2003)PubMedCentralPubMedGoogle Scholar
  23. 23.
    Y. Fang, D.L. Spector, Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818–823 (2007)PubMedCentralPubMedGoogle Scholar
  24. 24.
    Y. Lee, M. Kim, J. Han, K.H. Yeom, S. Lee, S.H. Baek, V.N. Kim, MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)PubMedGoogle Scholar
  25. 25.
    Z. Xie, E. Allen, N. Fahlgren, A. Calamar, S.A. Givan, J.C. Carrington, Expression of Arabidopsis MIRNA genes. Plant Physiol. 138, 2145–2154 (2005)PubMedCentralPubMedGoogle Scholar
  26. 26.
    B. Yu, L. Bi, B. Zheng, L. Ji, D. Chevalier, M. Agarwal, V. Ramachandran, W. Li, T. Lagrange, J.C. Walker, X. Chen, The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc. Natl. Acad. Sci. U.S.A. 105, 10073–10078 (2008)PubMedCentralPubMedGoogle Scholar
  27. 27.
    Y. Kurihara, Y. Watanabe, Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. U.S.A. 101, 12753–12758 (2004)PubMedCentralPubMedGoogle Scholar
  28. 28.
    M.H. Han, S. Goud, L. Song, N. Fedoroff, The Arabidopsis double stranded RNA-binding protein HYL1 plays a role in microRNA mediated gene regulation. Proc. Natl. Acad. Sci. U.S.A. 101, 1093–1098 (2004)PubMedCentralPubMedGoogle Scholar
  29. 29.
    Y. Kurihara, Y. Takashi, Y. Watanabe, The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212 (2006)PubMedGoogle Scholar
  30. 30.
    W. Park, J. Li, R. Song, J. Messing, X. Chen, CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 484–1495 (2002)Google Scholar
  31. 31.
    K.M. Bollman, M.J. Aukerman, M.Y. Park, C. Hunter, T.Z. Berardini, R.S. Poethig, HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130, 1493–1504 (2003)PubMedGoogle Scholar
  32. 32.
    D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)PubMedGoogle Scholar
  33. 33.
    P. Brodersen, L. Sakvarelidze-Achard, M. Bruun-Rasmussen, P. Dunoyer, Y.Y. Yamamoto, L. Sieburth, O. Voinnet, Widespread translational inhibition by plant miRNAs and siRNAs. Science 20, 1185–1190 (2008)Google Scholar
  34. 34.
    M.J. Aukerman, H. Sakai, Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003)PubMedCentralPubMedGoogle Scholar
  35. 35.
    B.D. Pant, M. Musialak-Lange, P. Nuc, P. May, A. Buhtz, J. Kehr, D. Walther, W.R. Scheible, Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541–1555 (2009)PubMedCentralPubMedGoogle Scholar
  36. 36.
    R. Pacheco, A. García-Marcos, D. Barajas, J. Martiáñez, F. Tenllado, PVX–potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res. 165, 231–235 (2012)PubMedGoogle Scholar
  37. 37.
    R.C. Lee, R.L. Feinbaum, V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993)PubMedGoogle Scholar
  38. 38.
    C. Llave, MicroRNAs: more than a role in plant development? Mol. Plant Pathol. 5, 361–366 (2004)PubMedGoogle Scholar
  39. 39.
    C.H. Lecellier, P. Dunoyer, K. Arar, C.J. Lehmann, S. Eyquem, C. Himber, A. Saïb, O. Voinnet, A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005)PubMedGoogle Scholar
  40. 40.
    C. Simon-Mateo, J.A. Garcia, MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J. Virol. 80, 2429–2436 (2006)PubMedCentralPubMedGoogle Scholar
  41. 41.
    A.R. Naqvi, Q.M. Haq, S.K. Mukherjee, MicroRNA profiling of Tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol. J. 7, 281 (2010)PubMedCentralPubMedGoogle Scholar
  42. 42.
    I. Amin, L.P. Basavaprabhu, R.W. Briddon, S. Mansoo, C.M. Fauquet, Common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol. J. 8, 143 (2011)PubMedCentralPubMedGoogle Scholar
  43. 43.
    A. Pérez-Quintero, R. Neme, A. Zapata, C. López, Plant miRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol. 10, 138 (2010)PubMedCentralPubMedGoogle Scholar
  44. 44.
    I.M. Ehrenreich, M.D. Purugganan, Sequence variation of microRNAs and their binding sites in Arabidopsis. Plant Physiol. 146, 1974–1982 (2008)PubMedCentralPubMedGoogle Scholar
  45. 45.
    J. Zhai, J. Dong-Hoon, D.P. Emanuele, S. Park, D.R. Benjamin, L. Yupeng, A.J. González, Z. Yan, L.K. Sherry, A.G. Michael, S.A. Jackson, G. Stacey, D.R. Cook, P.J. Green, S. Janine, B.C. Meyers, MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25, 2540–2553 (2011)PubMedGoogle Scholar
  46. 46.
    F. Li, D. Pignatta, C. Bendix, J.O. Brunkard, M.M. Cohn, J. Tung, H. Sun, P. Kumar, B. Baker, MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. U.S.A. 109, 1790–1795 (2012)PubMedCentralPubMedGoogle Scholar
  47. 47.
    P.V. Shivaprasad, H.M. Chen, K. Patel, D.M. Bond, B.A.C.M. Santos, D.C. Baulcombe, A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012)PubMedCentralPubMedGoogle Scholar
  48. 48.
    V.S. Mahajan, A. Drake, J. Chen, Virus-specific host miRNAs: antiviral defenses or promoters of persistent infection? Trends Immunol. 30, 1–7 (2009)PubMedCentralPubMedGoogle Scholar
  49. 49.
    X. Wang, J. Zhang, F. Li, G. Jin, H. Tao, X. Zhang, L. Yanda, MicroRNA identification based on sequence and structure alignment. Bioinformatics 21(18), 3610–3614 (2005)PubMedGoogle Scholar
  50. 50.
    M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)PubMedCentralPubMedGoogle Scholar
  51. 51.
    M. Rehmsmeier, P. Steffen, M. Hochsmann, R. Giegerich, Fast and effective prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)PubMedGoogle Scholar
  52. 52.
    J. Kruger, M. Rehmsmeier, RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34(2), 451–454 (2006)Google Scholar
  53. 53.
    O.L.A. SaeTrom, O.J. Snove, P.A.L. SaeTrom, Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11(7), 995–1003 (2005)PubMedGoogle Scholar
  54. 54.
    K. Sung-Kyu, N. Jin-Wu, L. Wha-Jin, Z. Byoung-Tak, A Kernel method for microRNA target prediction using sensible data and position-based features in Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB, La Jolla, 2005), pp 46–52Google Scholar
  55. 55.
    K.C. Miranda, T. Huynh, Y. Tay, Y.S. Ang, W.L. Tam, A.M. Thomson, B. Lim, I. Rigoutsos, A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6), 1203–1217 (2006)PubMedGoogle Scholar
  56. 56.
    F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, T. Li, miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res. 37(Suppl 1), 105–110 (2009)Google Scholar
  57. 57.
    Q. Niu, S. Lin, J. Reyes, K. Chen, H. Wu, S. Ye, N. Chua, Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24(11), 1420–1427 (2006)PubMedGoogle Scholar
  58. 58.
    J. Qu, J. Ye, R. Fang, Artificial microRNA-mediated virus resistance in plants. J. Virol. 81, 6690–6699 (2007)PubMedCentralPubMedGoogle Scholar
  59. 59.
    M. Fahim, P.J. Larkin, Designing effective amiRNA and multimeric amiRNA against plant viruses. Methods Mol. Biol. 942, 357–377 (2013)PubMedGoogle Scholar
  60. 60.
    N.S. Jelly, P. Schellenbaum, B. Walter, P. Maillot, Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res. 6, 1319–1327 (2012)Google Scholar
  61. 61.
    P. Palukaitis, S. MacFarlane, Viral counter-defense molecules, in Natural Resistance Mechanisms of Plants to Viruses, ed. by G. Loebenstein, J.P. Carr (Springer, Netherlands, 2006), pp. 165–185Google Scholar
  62. 62.
    O. Voinnet, Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206–220 (2005)PubMedGoogle Scholar
  63. 63.
    R. Anandalakshmi, G.J. Pruss, X. Ge, R. Marathe, A.C. Mallory, T.H. Smith, V.B. Vance, A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. U.S.A. 95, 13079–13084 (1998)PubMedCentralPubMedGoogle Scholar
  64. 64.
    G. Brigneti, O. Voinnet, W.X. Li, L.H. Ji, S.W. Ding, D.C. Baulcombe, Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998)PubMedGoogle Scholar
  65. 65.
    K.D. Kasschau, J.C. Carrington, A counter defensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470 (1998)PubMedGoogle Scholar
  66. 66.
    O. Voinnet, Y.M. Pinto, D.C. Baulcombe, Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. U.S.A. 96, 14147–14152 (1999)PubMedCentralPubMedGoogle Scholar
  67. 67.
    D.M. Bisaro, Silencing suppression by geminivirus proteins. Virology 344, 158–168 (2006)PubMedGoogle Scholar
  68. 68.
    Z. Merai, Z. Kerényi, S. Kertész, M. Magna, L. Lakatos, D. Silvahy, Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80, 5747–5756 (2006)PubMedCentralPubMedGoogle Scholar
  69. 69.
    A.J. Love, J. Laird, J. Holt, A.J. Hamilton, A. Sadanandom, J.J. Milner, Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J. Gen. Virol. 88, 3439–3444 (2007)PubMedGoogle Scholar
  70. 70.
    D. Silhavy, A. Molnár, A. Lucioli, G. Szittya, C. Hornyik, M. Tavazza, J. Burgyán, A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002)PubMedGoogle Scholar
  71. 71.
    L. Lakatos, T. Csorba, V. Pantaleo, E.J. Chapman, J.C. Carrington, Y.P. Liu, V.V. Dolja, L.F. Calvino, J.J. López-Moya, J. Burgyán, Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 25, 2768–2780 (2006)PubMedGoogle Scholar
  72. 72.
    T. Csorba, A. Bovi, T. Dalmay, J. Burgyan, The p122 subunit of Tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J. Virol. 81, 11768–11780 (2007)PubMedCentralPubMedGoogle Scholar
  73. 73.
    X. Zhang, Y.R. Yuan, Y. Pei, S.S. Lin, T. Tuschl, D.J. Patel, N.H. Chua, Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20, 3255–3268 (2006)PubMedGoogle Scholar
  74. 74.
    H.S. Guo, S.W. Ding, A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J. 21, 398–407 (2002)PubMedGoogle Scholar
  75. 75.
    P. Dunoyer, C.A. Brosnan, G. Schott, Y. Wang, F. Jay, A. Alioua, C. Himber, O. Voinnet, An endogenous, systemic RNAi pathway in plants. EMBO J. 29, 1699–1712 (2010)PubMedGoogle Scholar
  76. 76.
    H.A. Ebhardt, E.P. Thi, M.B. Wang, P.J. Unrau, Extensive 3′ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc. Natl. Acad. Sci. U.S.A. 102, 13398–13403 (2005)PubMedCentralPubMedGoogle Scholar
  77. 77.
    H. Vogler, R. Akbergenov, P.V. Shivaprasad, V. Dang, M. Fasler, K. Myoung-Ok, S. Zhanybekova, T. Hohn, M. Heinlein, Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J. Virol. 81, 10379–10388 (2007)PubMedCentralPubMedGoogle Scholar
  78. 78.
    B. Yu, E.J. Chapman, Z. Yang, J.C. Carrington, X. Chen, Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett. 580, 3117–3120 (2006)PubMedGoogle Scholar
  79. 79.
    J. Azevedo, D. Garcia, D. Pontier, S. Ohnesorge, A. Yu, S. Garcia, L. Braun, M. Bergdoll, M.A. Hakimi, T. Lagrange, O. Voinnet, Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24, 904–915 (2010)PubMedGoogle Scholar
  80. 80.
    A. Giner, L. Lakatos, M. Garcia-Chapa, J.J. Lopez-Moya, J. Burgyan, Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog. 6, e1000996 (2010)PubMedCentralPubMedGoogle Scholar
  81. 81.
    J.A. Diaz-Pendon, F. Li, W.X. Li, S.W. Ding, Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19, 2053–2063 (2007)PubMedCentralPubMedGoogle Scholar
  82. 82.
    H. Wang, K.J. Buckley, X. Yang, R.C. Buchmann, D.M. Bisaro, Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418 (2005)PubMedCentralPubMedGoogle Scholar
  83. 83.
    A. Kanazawa, J.-I. Inaba, H. Shimura, S. Otagaki, S. Tsukahara, A. Matsuzawa, B.M. Kim, K. Goto, C. Masuta, Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J. 65, 156–168 (2011)PubMedGoogle Scholar
  84. 84.
    E.J. Chapman, A.I. Prokhnevsky, K. Gopinath, V.V. Dolja, J.C. Carrington, Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004)PubMedGoogle Scholar
  85. 85.
    P. Chellappan, R. Vanitharani, F. Ogbe, C.M. Fauquet, Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. 138, 1828–1841 (2005)PubMedCentralPubMedGoogle Scholar
  86. 86.
    J. Chen, W.L. Xiang, D. Xie, J.R. Peng, S.W. Ding, Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16, 1302–1313 (2004)PubMedCentralPubMedGoogle Scholar
  87. 87.
    P. Dunoyer, C.H. Lecellier, E.A. Parizotto, C. Himber, O. Voinnet, Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004)PubMedCentralPubMedGoogle Scholar
  88. 88.
    D. Bortolamiol, M. Pazhouhandeh, K. Marrocco, P. Genschik, V. Ziegler-Graff, The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr. Biol. 17, 1615–1621 (2007)PubMedGoogle Scholar
  89. 89.
    E. Varallyay, A. Válóczi, A. Agyi, J. Burgyán, Z. Havelda, Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 29, 3507–3519 (2010)PubMedGoogle Scholar
  90. 90.
    M. Lewsey, F.C. Robertson, T. Canto, P. Palukaitis, J.P. Carr, Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J. 50, 240–252 (2007)PubMedGoogle Scholar
  91. 91.
    M.W. Endres, B.D. Gregory, Z. Gao, A.W. Foreman, S. Mlotshwa, G. Xin, J.P. Gail, R.E. Joseph, H.B. Lewis, V. Vicki, Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog. 6, e1000729 (2010)PubMedCentralPubMedGoogle Scholar
  92. 92.
    G. Schott, A. Mari-Ordonez, C. Himber, A. Alioua, O. Voinnet, P. Dunoyer, Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J. 31(11), 2553–2565 (2012)PubMedGoogle Scholar
  93. 93.
    C.S. Sullivan, D. Ganem, MicroRNAs and viral infection. Mol. Cell 20, 3–7 (2005)PubMedGoogle Scholar
  94. 94.
    S. Pfeffer, M. Zavolan, F.A. Gra¨sser, M. Chien, J.J. Russo, J. Ju, B. John, A.J. Enright, D. Marks, C. Sander, T. Tuschl, Identification of virus-encoded microRNAs. Science 304(5671), 734–736 (2004)PubMedGoogle Scholar
  95. 95.
    R.L. Skalsky, B.R. Cullen, Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol. 64, 123–141 (2010)PubMedCentralPubMedGoogle Scholar
  96. 96.
    R.P. Kincaid, J.M. Burke, C.S. Sullivan, RNA virus microRNA that mimics a B-cell oncomiR. Proc. Natl. Acad. Sci. U.S.A. 109, 3077–3082 (2012)PubMedCentralPubMedGoogle Scholar
  97. 97.
    R.P. Kincaid, C.S. Sullivan, Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 8(12), e1003018 (2012)PubMedCentralPubMedGoogle Scholar
  98. 98.
    J.W. Carl, J. Trgovcich, S. Hannenhalli, Widespread evidence of viral miRNAs targeting host pathways. BMC Bioinform. 14(Suppl 2), S3 (2013)Google Scholar
  99. 99.
    Z.A. Klase, G.C. Sampey, F. Kashanchi, Retrovirus infected cells contain viral microRNAs. Retrovirology 10, 15 (2013)PubMedGoogle Scholar
  100. 100.
    I. Shazia, Role of viral and host MicroRNAs in plant virus interaction, Ph.D. Thesis, School of Biological Sciences, The University of Queensland, 2010Google Scholar
  101. 101.
    J.P. Alvarez, I. Pekker, A. Goldschimt, E. Plum, Z. Amsellam, Y. Eshed, Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18, 1134–1151 (2006)PubMedCentralPubMedGoogle Scholar
  102. 102.
    R. Schwab, S. Ossowski, M. Riester, N. Warthmann, D. Weigel, Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006)PubMedCentralPubMedGoogle Scholar
  103. 103.
    E.A. Parizotto, P. Dunoyer, N. Rahm, C. Himber, O. Voinnet, In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18, 2237–2242 (2004)PubMedGoogle Scholar
  104. 104.
    H. Vaucheret, F. Vazquez, P. Crete, D.P. Bartel, The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197 (2004)PubMedGoogle Scholar
  105. 105.
    R. Schwab, S. Ossowski, N. Warthman, D. Weigel, Directed gene silencing with artificial microRNAs, in Plant MicroRNAs, Methods in Molecular Biology, ed. by B.C. Meyers, P.J. Green (Humana Press, Clifton, 2010), pp. 71–89Google Scholar
  106. 106.
    A.C. Mallory, B.J. Reinhart, M.W. Jones-Rhoades, G. Tang, P.D. Zamore, M.K. Barton, D.P. Bartel, MicroRNA control of PHABULOSA in leaf development, importance of pairing to the microRNA 59 region. EMBO J. 23, 3356–3364 (2004)PubMedGoogle Scholar
  107. 107.
    A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004)PubMedGoogle Scholar
  108. 108.
    M. Kertesz, N. Lovino, U. Unnerstall, U. Gaul, E. Segal, The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007)PubMedGoogle Scholar
  109. 109.
    N. Warthmann, H. Chen, S. Ossowski, D. Weigel, P. Herve, Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3, e1829 (2008)PubMedCentralPubMedGoogle Scholar
  110. 110.
    C.G. Duan, C.H. Wang, R.X. Fang, H.S. Guo, Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J. Virol. 82, 11084–11095 (2008)PubMedCentralPubMedGoogle Scholar
  111. 111.
    H. Yan, X. Deng, Y. Cao, J. Huang, L. Ma, B. Zhao, A novel approach for the construction of plant amiRNA expression vectors. J. Biotechnol. 151(1), 9–14 (2011)PubMedGoogle Scholar
  112. 112.
    B.N. Chung, T. Canto, P. Palukaitis, Stability of recombinant plant viruses containing genes of unrelated plant viruses. J. Gen. Virol. 88, 1347–1355 (2007)PubMedGoogle Scholar
  113. 113.
    R. Yi, Y. Qin, I.G. Macara, B.R. Cullen, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003)PubMedGoogle Scholar
  114. 114.
    S. Lin, H. Wu, S. Elena, K. Chen, Q. Niu, S. Ye, C. Chen, N.H. Chua, Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog. 5(2), e1000312 (2009)PubMedCentralPubMedGoogle Scholar
  115. 115.
    G. Lafforgue, F. Martínez, S. Josep, I. Francisca, N. Qi-Wen, L. Shih-Shun, V.S. Ricard, C. Nam-Hai, D. José-Antonio Don, F.E. Santiago, Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J. Virol. 85(19), 9686 (2011)PubMedCentralPubMedGoogle Scholar
  116. 116.
    F. Martínez, G. Lafforgue, M.J. Morelli, F. González-Candelas-, N.H. Chua, J.A. Daro`s, S.F. Elena, Ultradeep sequencing analysis of population dynamics of virus escape mutants in RNAi mediated resistant plants. Mol. Biol. Evol. 29(11), 3297–3307 (2012)PubMedGoogle Scholar
  117. 117.
    A.R. Naqvi, N.R. Choudhury, S.K. Mukherjee, Q.M.R. Haq, In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol. Biochem. 49(1), 13–17 (2011)PubMedGoogle Scholar
  118. 118.
    Y. Lu, Q. Gan, X. Chi, S. Qin, Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep. 27, 1571–1579 (2008)PubMedGoogle Scholar
  119. 119.
    X. Zhang, H. Li, J. Zhang, C. Zhang, P. Gong, K. Ziaf, F. Xiao, Z. Ye, Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res. 3, 1–13 (2011)Google Scholar
  120. 120.
    R. Schwab, O. Voinnet, RNA silencing amplification in plants: size matters. Proc. Natl. Acad. Sci. U.S.A. 107(34), 14945–14946 (2010)PubMedCentralPubMedGoogle Scholar
  121. 121.
    J.M. Franco-Zorrilla, A. Valli, M. Todesco, I. Mateos, M.I. Puga, I. Rubio-Somoza, A. Leyva, D. Weigel, J.A. García, J. Paz-Ares, Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39(8), 1033–1037 (2007)PubMedGoogle Scholar
  122. 122.
    Z. Deng, Y. Xiangling, F. Ling, J.R. Zina, B.B. Yang, Misprocessing and functional arrest of microRNAs by miR-Pirate: roles of miR-378 and miR-17. Biochem. J. 450, 375–386 (2013)PubMedGoogle Scholar
  123. 123.
    J.P. Zhao, X.L. Jiang, B.Y. Zhang, X.H. Su, Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7(9), e44968 (2012)PubMedCentralPubMedGoogle Scholar
  124. 124.
    C.C. Pritchard, H.H. Cheng, T. Muneesh, MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13, 358–369 (2012)PubMedGoogle Scholar
  125. 125.
    A. Jha, R. Shankar, Employing machine learning for reliable miRNA target identification in plants. BMC Genom. 12, 636 (2011)Google Scholar
  126. 126.
    P.H. Williams, R. Eyles, G. Weiller, Plant microRNA prediction by supervised machine learning using C5.0 decision trees. J. Nucleic Acids, Article ID 652979 (2012)Google Scholar
  127. 127.
    M. Fahim, A.M. Anthony, C.C. Wood, P.J. Larkin, Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol. J. 10(2), 150–163 (2012)PubMedGoogle Scholar
  128. 128.
    X. Lin, X. Ruan, M.G. Anderson, J.A. McDowell, P.E. Kroeger, S.W. Fesik et al., siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535 (2005)PubMedCentralPubMedGoogle Scholar
  129. 129.
    S. Praveen, S.V. Ramesh, A.K. Mishra, V. Koundal, P. Palukaitis, Silencing potential of viral derived RNAi constructs in tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Res. 19, 45–55 (2010)PubMedGoogle Scholar
  130. 130.
    L. Zhang, D. Hou, X. Chen, D. Li, L. Zhu, Y. Zhang, J. Li, Z. Bian, X. Liang, X. Cai, Y. Yin, C. Wang, T. Zhang, D. Zhu, D. Zhang, J. Xu, Q. Chen, Y. Ba, J. Liu, Q. Wang, J. Chen, J. Wang, M. Wang, Q. Zhang, J. Zhang, K. Zen, C.Y. Zhang, Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22, 107–126 (2012)PubMedGoogle Scholar
  131. 131.
    T. Ai, L. Zhang, Z. Gao, C.X. Zhu, X. Guo, Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol. 13(2), 304–316 (2011)PubMedGoogle Scholar
  132. 132.
    Y.J. Kung, S.S. Lin, Y.L. Huang, T.C. Chen, S.S. Harish, N.H. Chua, S.D. Yeh, Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol. Plant Pathol. 13(3), 303–317 (2012)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shunmugiah Veluchamy Ramesh
    • 1
    Email author
  • Milind B. Ratnaparkhe
    • 1
  • Giriraj Kumawat
    • 1
  • Girish Kumar Gupta
    • 1
  • Syed Masroor Husain
    • 1
  1. 1.Directorate of Soybean Research, Indian Council of Agricultural Research (ICAR)IndoreIndia

Personalised recommendations