Advertisement

Virus Genes

, Volume 48, Issue 1, pp 74–80 | Cite as

Comparison of fiber gene sequences of inclusion body hepatitis (IBH) and non-IBH strains of serotype 8 and 11 fowl adenoviruses

  • Helena Grgić
  • Peter J. Krell
  • Éva NagyEmail author
Article

Abstract

Fowl adenoviruses (FAdVs) are common in broiler operations, and the most frequently isolated FAdVs belong to serotypes 1, 8, and 11. Serotype 1 viruses are considered nonpathogenic. While some serotype 8 and 11 viruses cause inclusion body hepatitis (IBH), these virus serotypes can also be isolated from non-IBH cases. The fiber protein is one of the major constituents of the adenoviral capsid, involved in virus entry, and it has been implicated in the variation of virulence of FAdVs. The fiber gene sequences of four FAdV-8 and four FAdV-11 isolates from both IBH and non-IBH cases were determined and analyzed for a possible association of the fiber gene sequence in virulence. The fiber protein can be divided into tail, shaft, and head domains comprising some specific features. The conserved “RKRP” sequence motif (aa 17–aa 20) fit the consensus sequence predicted for the nuclear localization signal, while the “VYPF” motif (aa 53–aa 56), involved in the penton base interaction, was also found. Similar to mammalian adenoviruses, 17 pseudo-repeats with an average length of 16 aa were detected in the FAdV-8 fiber shaft region, while 20 pseudo-repeats with an average length of 18 aa were found in FAdV-11 fibers. There was a 144–147 nt difference between the fiber genes of the two FAdV serotypes. In the shaft region, the TLWT motif that marks the beginning of the fiber head domain of the mastadenovirus was not evident among examined FAdVs. The FAdV-11 isolates had 99.1 % aa sequence identity and 99.3 % similarity to each other, and there was no conserved aa substitution within the fibers. The FAdV-8 fiber proteins showed an overall lower, 89 % aa sequence identity and 93.4 % similarity, to each other and 22 nonsynonymous mutations were detected. Virulence markers were not detected in the analyzed fiber gene sequences of the different pathotypes of the two FAdV serotypes.

Keywords

FAdV-8 FAdV-11 Fiber gene sequences Conserved TLWT motif Virulence markers 

Abbreviations

FAdV-8

Fowl adenovirus serotype 8

FAdV-11

Fowl adenovirus serotype 11

IBH

Inclusion body hepatitis

NLS

Nuclear localization signal

Notes

Acknowledgments

This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Poultry Research Council (CPRC), and the Ontario Ministry of Agriculture and Food (OMAF). The authors thank Dr. Davor Ojkic for providing the FAdV isolates.

References

  1. 1.
    B. Harrach, M. Benkő, G.W. Both, M. Brown, A.J. Davison, M. Echavarría, M. Hess, M.S. Jones, A. Kajon et al., in Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, ed. by A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz (Elsevier, San Diego, 2011), pp. 125–141Google Scholar
  2. 2.
    B.M. Adair, S.D. Fitzgerald, in Diseases of Poultry, 12th edn., ed. by Y.M. Saif, A.M. Fadly, J.R. Glisson, L.R. McDougald, L.K. Nolan, D.E. Swayne (Blackwell Publishing, Ames, 2008), pp. 251–291Google Scholar
  3. 3.
    M. Saifuddin, C. Wilks, Arch. Virol. 116, 33 (1991)PubMedCrossRefGoogle Scholar
  4. 4.
    S. Gomis, R. Goodhope, D. Ojkic, P. Willson, Avian Dis. 50, 550 (2006)PubMedCrossRefGoogle Scholar
  5. 5.
    D. Ojkic, E. Martin, J. Swinton, J.P. Vaillancourt, M. Boulinanne, S. Gomis, Avian Pathol. 37, 95 (2008)PubMedCrossRefGoogle Scholar
  6. 6.
    D. Ojkic, T. Tuboly, P.J. Krell, É. Nagy, Can. J. Vet. Res. 72, 236 (2008)PubMedCentralPubMedGoogle Scholar
  7. 7.
    J. Pallister, P.J. Wright, M. Sheppard, J. Virol. 70, 5115 (1996)PubMedCentralPubMedGoogle Scholar
  8. 8.
    A. Marek, V. Nolte, A. Schachner, E. Berger, C. Schlötterer, M. Hess, Vet. Microbiol. 156, 411 (2012)PubMedCrossRefGoogle Scholar
  9. 9.
    U.B. Rasmussen, Y. Schlesinger, A. Pavirani, M. Mehtali, Gene 159, 279 (1995)PubMedCrossRefGoogle Scholar
  10. 10.
    H.S. Alexander, P. Huber, J.X. Cao, P.J. Krell, É. Nagy, J. Virol. Methods 74, 9 (1998)PubMedCrossRefGoogle Scholar
  11. 11.
    D. Ojkic, É. Nagy, Virology 283, 197 (2001)PubMedCrossRefGoogle Scholar
  12. 12.
    H. Grgić, D.-H. Yang, É. Nagy, Virus Res. 156, 91 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    J.C. Corredor, A. Garceac, P.J. Krell, É. Nagy, Virus Genes 36, 331 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    S. Chiocca, R. Kurzbauer, G. Schaffner, A. Baker, V. Mautner, M. Cotten, J. Virol. 70, 2939 (1996)PubMedCentralPubMedGoogle Scholar
  15. 15.
    B.D. Griffin, É. Nagy, J. Gen. Virol. 92, 1260 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    D. Ojkic, É. Nagy, J. Gen. Virol. 81, 1833 (2000)PubMedGoogle Scholar
  17. 17.
    A. Marek, C. Kosiol, B. Harrach, G.L. Kaján, C. Schlötterer, M. Hess, Vet. Microbiol. 166, 250 (2013)PubMedCrossRefGoogle Scholar
  18. 18.
    N.M. Green, N.G. Wrigley, W.C. Russell, S.R. Martin, A.D. McLachlan, EMBO J. 2, 1357 (1983)PubMedGoogle Scholar
  19. 19.
    J. Chroboczek, B. Jacrot, Virology 161, 549 (1987)PubMedCrossRefGoogle Scholar
  20. 20.
    J.S. Hong, K.G. Mullis, J.A. Engler, Virology 167(2), 545 (1988)PubMedGoogle Scholar
  21. 21.
    C. Signas, G. Akusjarvi, U. Petterson, J. Virol. 53, 672 (1985)PubMedCentralPubMedGoogle Scholar
  22. 22.
    G.L. Kaján, A.J. Davison, V. Palya, B. Harrach, M. Benko, J. Gen. Virol. 93(Pt 11), 2457 (2012)PubMedCrossRefGoogle Scholar
  23. 23.
    G.L. Kaján, R. Stefancsik, K. Ursu, V. Palya, M. Benko, Virus Res. 153(2), 226 (2010)PubMedCrossRefGoogle Scholar
  24. 24.
    M. Hess, A. Cuzange, R.W.H. Ruigrok, J. Chroboczek, B. Jacrot, J. Mol. Biol. 252, 379 (1995)PubMedCrossRefGoogle Scholar
  25. 25.
    M.L. Caillet-Boudin, J. Mol. Biol. 208, 195 (1989)PubMedCrossRefGoogle Scholar
  26. 26.
    S.S. Hong, P. Boulanger, EMBO J. 14, 4714 (1995)PubMedGoogle Scholar
  27. 27.
    C. Zubieta, G. Schoehn, J. Chroboczek, S. Cusack, Mol. Cell 17, 121 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    S. Vrati, D. Boyle, R. Kocherhans, G.W. Both, Virology 209, 400 (1995)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Hess, H. Blocker, P. Brandt, Virology 238, 145 (1997)PubMedCrossRefGoogle Scholar
  30. 30.
    X. Li, S.K. Tikoo, Virus Genes 25, 59 (2002)PubMedCrossRefGoogle Scholar
  31. 31.
    M. Sheppard, W. Werner, M.A. Johnson, DNA Seq. 8, 391 (1998)PubMedGoogle Scholar
  32. 32.
    M.J. van Raaij, A. Mitraki, G. Lavigne, S. Cusack, Nature 401, 935 (1999)PubMedCrossRefGoogle Scholar
  33. 33.
    D. Xia, L.J. Henry, R.D. Gerard, J. Deisenhofer, Structure 2, 1259 (1994)PubMedCrossRefGoogle Scholar
  34. 34.
    M. Mase, N. Kikuyasu, T. Imada, J. Vet. Diagn. Invest. 22, 218 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    J.X. Cao, P.J. Krell, É. Nagy, J. Gen. Virol. 79, 2507 (1998)PubMedGoogle Scholar
  36. 36.
    A. Marek, E. Schulz, C. Hess, M. Hess, J. Vet. Diagn. Invest. 6, 937 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathobiology, Ontario Veterinary CollegeUniversity of GuelphGuelphCanada
  2. 2.Department of Molecular and Cellular Biology, College of Biological SciencesUniversity of GuelphGuelphCanada

Personalised recommendations