Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The triple gene block movement proteins of a grape virus in the genus Foveavirus confer limited cell-to-cell spread of a mutant Potato virus X

Abstract

Grapevine rupestris stem pitting-associated virus (GRSPaV) is a member of the genus Foveavirus in the family Betaflexiviridae. The genome of GRSPaV encodes five proteins, among which are three movement proteins designated the triple gene block (TGB) proteins. The TGB proteins of GRSPaV are highly similar to their counterparts in Potato virus X (PVX), as reflected in size, modular structure, conservation of critical amino acid sequence motifs, as well as similar cellular localization. Based on these similarities, we predicted that the TGB proteins of these two viruses would be interchangeable. To test this hypothesis, we replaced the entire or partial sequence of PVX TGB with the corresponding regions from GRSPaV, creating chimeric viruses that contain the PVX backbone and different sequences from GRSPaV TGB. These chimeric constructs were delivered into plants of Nicotiana benthamiana through agro-infiltration to test whether they were capable of cell-to-cell and systemic movement. To our surprise, viruses derived from pPVX.GFP(CH3) bearing GRSPaV TGB in place of PVX TGB lost the ability to move either cell-to-cell or systemically. Interestingly, another chimeric virus resulting from pPVX.GFP(HY2) containing four TGB genes (TGB1 from PVX and TGB1-3 from GRSPaV), exhibited limited cell-to-cell, but not systemic, movement. Our data question the notion that analogous movement proteins encoded by even distantly related viruses are functionally interchangeable and can be replaced by each other. These data suggest that other factors, besides the TGB proteins, may be required for successful intercellular and/or systemic movement of progeny viruses. This is the first experimental demonstration that the GRSPaV TGB function as movement proteins in the context of a chimeric virus and that four TGB genes were required to support the intercellular movement of the chimeric virus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    J.G. Atabekov, N.P. Rodionova, O.V. Karpova, S.V. Kozlovsky, V.Y. Poljakov, Virology 271, 259 (2000)

  2. 2.

    D.C. Baulcombe, S. Chapman, S. Santa Cruz, Plant J 7, 1045–1053 (1995)

  3. 3.

    S. Chapman, T. Kavanagh, D. Baulcome, Plant J. 2, 549–557 (1992)

  4. 4.

    C.M. Deom, X.Z. He, R.N. Beachy, A.K. Weissinger, Virology 205, 198–209 (1994)

  5. 5.

    O. Fedorkin, A. Solovyev, N. Yelina, A. Zamyatnin, R. Zinovkin, K. Makinen, J. Schiemann, S. Yu Morozov, J. Gen. Virol. 82, 449–458 (2001)

  6. 6.

    C.A. Fenczik, H.S. Padgett, C.A. Holt, S.J. Casper, R.N. Beachy, Mol. Plant Microbe Interact. 8, 666–673 (1995)

  7. 7.

    D. Giesman-Cookmeyer, S. Silver, A.A. Vaewhongs, S.A. Lommel, C.M. Deom, Virology 213, 38–45 (1995)

  8. 8.

    S. Haupt, G.H. Cowan, A. Ziegler, A.G. Roberts, K.J. Oparka, L. Torrance, Plant Cell 17, 164–181 (2005)

  9. 9.

    A.R. Howard, M.L. Heppler, H.J. Ju, K. Krishnamurthy, M.E. Payton, J. Verchot-Lubicz, Virology 328, 185–197 (2004)

  10. 10.

    A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz. Virus taxonomy: 9th Report of the international committee on the taxonomy of viruses. Academic Press

  11. 11.

    E.V. Koonin, V.V. Dolja, Crit. Rev. Biochem. Mol. Biol. 28, 375–430 (1993)

  12. 12.

    E. Lauber, C. Bleykasten-Grosshans, M. Erhardt, S. Bouzoubaa, G. Jonard, K.E. Richards, H. Guilley, Mol. Plant Microbe Interact. 11, 618–625 (1998)

  13. 13.

    J.A. Lindbo, BMC Biotechnol. 7, 52 (2007)

  14. 14.

    T.J. Lough, N.E. Netzler, S.J. Emerson, P. Sutherland, F. Carr, D.L. Beck, W.J. Lucas, R.L. Forster, Mol. Plant Microbe Interact. 13, 962–974 (2000)

  15. 15.

    W.J. Lucas, Virology 344, 169–184 (2006)

  16. 16.

    J. Matousek, J. Schubert, P. Dedic, Virus Res. 146, 81–88 (2009)

  17. 17.

    B. Meng, D. Gonsalves, Plant Viruses 1, 52–62 (2007)

  18. 18.

    B. Meng, S.Z. Pang, P.L. Forsline, J.R. McFerson, D. Gonsalves, J. Gen. Virol. 79, 2059–2069 (1998)

  19. 19.

    B. Meng, R. Credi, N. Petrovic, I. Tomazic, D. Gonsalves, Plant Dis. 87, 515–522 (2003)

  20. 20.

    B. Meng, S. Venkataraman, C. Li, W. Wang, C. Dayan-Glick, M. Mawassi, Virology 435, 453–462 (2013)

  21. 21.

    K. Mise, R.F. Allison, M. Janda, P. Ahlquist, J. Virol. 67, 2815–2823 (1993)

  22. 22.

    S.Y. Morozov, A.G. Solovyev, J. Gen. Virol. 84, 1351–1366 (2003)

  23. 23.

    S.Y. Morozov, A.G. Solovyev, N.O. Kalinina, O.N. Fedorkin, O.V. Samuilova, J. Schiemann, J.G. Atabekov, Virology 260, 55–63 (1999)

  24. 24.

    A. Nejidat, F. Cellier, A. Holt, R. Gafny, A.L. Eggenberger, R.N. Beachy, Virology 180, 318–326 (1991)

  25. 25.

    K.J. Oparka, A.G. Roberts, P. Boevink, S. Santa Cruz, I. Roberts, K.S. Pradel, A. Imlau, G. Kotlizky, n. Cell 97, 743–754 (1999)

  26. 26.

    N. Petrovic, B. Meng, M. Ravnikar, I. Mavric, D. Gonsalves, Plant Dis. 87, 510–514 (2003)

  27. 27.

    I.T. Petty, A.O. Jackson, Virology 179, 712–718 (1990)

  28. 28.

    A.L. Rao, B. Cooper, C.M. Deom, Phytopathology 88, 666–672 (1998)

  29. 29.

    A.R. Rebelo, S. Niewiadomski, S.W. Prosser, P. Krell, B. Meng, Virus Res. 138, 57–69 (2008)

  30. 30.

    J. Sambrook, D.W. Russell, Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory, New York, 2001)

  31. 31.

    H.B. Scholthof, Trends Plant Sci. 10, 376–382 (2005)

  32. 32.

    A.G. Solovyev, E.I. Savenkov, V.Z. Grdzelishvili, N.O. Kalinina, S.Y. Morozov, J. Schiemann, J.G. Atabekov, Virology 253, 278–287 (1999)

  33. 33.

    M. Taliansky, L. Torrance, N.O. Kalinina, Methods Mol. Biol. 451, 33–54 (2008)

  34. 34.

    A. Tamai, K. Kubota, H. Nagano, M. Yoshii, M. Ishikawa, K. Mise, T. Meshi, Virology 315, 56–67 (2003)

  35. 35.

    J. Verchot-Lubicz, L. Torrance, A.G. Solovyev, S.Y. Morozov, A.O. Jackson, D. Gilmer, Mol. Plant Microbe Interact. 23, 1231–1247 (2010)

  36. 36.

    E. Waigmann, S. Ueki, K. Trutnyeva, V. Citovsky, Crit. Rev. Plant Sci. 23, 195–250 (2004)

  37. 37.

    C. Xiang, P. Han, I. Lutziger, K. Wang, D.J. Oliver, Plant Mol. Biol. 40, 711–717 (1999)

  38. 38.

    Y. Zhang, J.K. Uyemoto, D. Golino, A. Rowhani, Phytopathology 88, 1231–1237 (1998)

  39. 39.

    V. Ziegler-Graff, P.J. Guilford, D.C. Baulcombe, Virology 182, 145–155 (1991)

Download references

Acknowledgments

This study is supported by an NSERC Discovery Grant (400163) awarded to B. Meng. The authors thank Dr. S. Venkataraman for help with Northern blotting, Dr. J. Verchot-Lubicz (Oklahoma State University) for the PVX infectious clone, and Dr. D. J. Oliver (Iowa State University) for the binary plasmid vector pCB301.

Author information

Correspondence to Baozhong Meng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mann, K., Meng, B. The triple gene block movement proteins of a grape virus in the genus Foveavirus confer limited cell-to-cell spread of a mutant Potato virus X . Virus Genes 47, 93–104 (2013). https://doi.org/10.1007/s11262-013-0908-0

Download citation

Keywords

  • PVX
  • GRSPaV
  • Movement complementation
  • Triple gene block proteins
  • Nicotiana benthamiana
  • Fluorescence microscopy