Advertisement

Virus Genes

, Volume 46, Issue 3, pp 588–590 | Cite as

Genome sequence and characterization of a Rhodococcus equi phage REQ1

  • Steve Petrovski
  • Robert J. Seviour
  • Daniel Tillett
Article

Abstract

Rhodococcus equi is a pathogenic member of the Actinobacteria responsible for causing serious infections in equines. A novel Siphoviridae bacteriophage (REQ1) lytic in R. equi was isolated and characterized. The genome size of REQ1 is 51,342 bp, and its sequence shares 7 % similarity to other DNA sequence in GenBank. Putative open reading frames were identified, and their functions were identified based on their predicted amino acid similarities. REQ1 phage has a modular genome, a feature common in double-stranded DNA phages.

Keywords

Rhodococcus equi Actinobacteria REQ1 bacteriophage 

Notes

Acknowledgments

The research was supported by the Australian Research Council Linkage Grant (LP0774913) together with Melbourne Water and South East Water who are thanked for their financial support. S. Petrovski was funded by the ARC Linkage and La Trobe University grants.

Supplementary material

11262_2013_887_MOESM1_ESM.docx (103 kb)
Supplementary material 1 (DOCX 102 kb)

References

  1. 1.
    S. Takai, Epidemiology of Rhodococcus equi infections: a review. Vet. Microbiol. 56, 167–176 (1997)PubMedCrossRefGoogle Scholar
  2. 2.
    M.D. Barton, Ecology of Rhodococcus equi. Vet. Microbiol. 9, 65–76 (1984)PubMedCrossRefGoogle Scholar
  3. 3.
    S. Petrovski, R.J. Seviour, D. Tillett, Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia-, Rhodococcus- and Nocardia-stabilized foams in activated sludge plants. Appl. Environ. Microbiol. 77, 3923–3929 (2011)PubMedCrossRefGoogle Scholar
  4. 4.
    E.J. Summers, M. Liu, J.J. Gill, M. Grant, T.N. Chan-Cortes, L. Furguson, C. Janes, K. Lange, M. Bertoli, C. Moore, R.C. Orchard, N.D. Cohen, R. Young, Genomic and functional analysis of the Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl. Environ. Microbiol. 77, 669–683 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Petrovski, Z.A. Dyson, E.S. Quill, D. Tillett, R.J. Seviour, An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res. 45, 2146–2154 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    J. Maniloffi, H.W. Ackermann, Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Achieve Virol. 143, 10 (1998)Google Scholar
  7. 7.
    H. Brüssow, F. Desiere, Comparative phage genomics and the evolution of Siphovirdae: insights from dairy phages. Mol. Microbiol. 39, 213–222 (2001)PubMedCrossRefGoogle Scholar
  8. 8.
    C.E. Catalano, The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell. Mol. Life Sci. 57, 128–148 (2000)PubMedCrossRefGoogle Scholar
  9. 9.
    T. Dokland, Scaffolding proteins and their role in viral assembly. Cell. Mol. Life Sci. 56, 580–603 (1999)PubMedCrossRefGoogle Scholar
  10. 10.
    S. Petrovski, Z.A. Dyson, R.J. Seviour, D. Tillett, Small but sufficient: the Rhodococcus phage RRH1 has the smallest known Siphoviridae genome at 14.2 kilobases. J. Virol. 86, 358–363 (2012)PubMedCrossRefGoogle Scholar
  11. 11.
    M. Belcaid, A. Bergeron, G. Poisson, The evolution of the tape measure protein: units, duplications and losses. BMC Bioinform. 12, S10 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Piuri, G.F.A. Hatfull, Peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol. Microbiol. 62, 1569–1585 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    H. Raaijmakers, O. Vix, I. Törõ, S. Golz, B. Kemper, D. Suck, X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture. EMBO J. 18, 1447–1458 (1999)PubMedCrossRefGoogle Scholar
  14. 14.
    S. Petrovski, R.J. Seviour, D. Tillett, Genome sequence and characterization of the Tsukamurella phage TPA2. Appl. Environ. Microbiol. 77, 1389–1398 (2011)PubMedCrossRefGoogle Scholar
  15. 15.
    X. Cheng, X. Zhang, J.W. Pflugrath, F.W. Studier, The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 91, 4034–4038 (1994)PubMedCrossRefGoogle Scholar
  16. 16.
    A. Bateman, M. Bycroft, The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. 299, 1113–1119 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    G. Lipps, A.O. Weinzierl, G. von Scheven, C. Buchen, P. Cramer, Structure of a bifunctional DNA primase-polymerase. Nat. Struct. Mol. Biol. 11, 157–162 (2004)PubMedCrossRefGoogle Scholar
  18. 18.
    M.C. Smith, H.M. Thorpe, Diversity in the serine recombinases. Mol. Microbiol. 44, 299–307 (2002)PubMedCrossRefGoogle Scholar
  19. 19.
    M.C.M. Smith, W.R.A. Brown, A.R. McEwan, P.A. Rowley, Site-specific recombination b phiC31 integrase and other large serine recombinases. Biochem. Soc. Trans. 38, 388–394 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Steve Petrovski
    • 1
    • 3
  • Robert J. Seviour
    • 1
    • 2
  • Daniel Tillett
    • 1
  1. 1.La Trobe Institute for Molecular SciencesLa Trobe UniversityBendigoAustralia
  2. 2.Department of MicrobiologyLa Trobe UniversityMelbourneAustralia
  3. 3.Molecular PathologyPeter MacCallum Cancer CentreMelbourneAustralia

Personalised recommendations