Virus Genes

, Volume 46, Issue 2, pp 242–254 | Cite as

Kaposi’s sarcoma: a computational approach through protein–protein interaction and gene regulatory networks analysis

  • Aubhishek Zaman
  • Md. Habibur Rahaman
  • Samsad Razzaque


Interactomic data for Kaposi’s Sarcoma Associated Herpes virus (KSHV)—the causative agent of vascular origin tumor called Kaposi’s sarcoma—is relatively modest to date. The objective of this study was to assign functions to the previously uncharacterized ORFs in the virus using computational approaches and subsequently fit them to the host interactome landscape on protein, gene, and cellular level. On the basis of expression data, predicted RNA interference data, reported experimental data, and sequence based functional annotation we also tried to hypothesize the ORFs role in lytic and latent cycle during viral infection. We studied 17 previously uncharacterized ORFs in KSHV and the host-virus interplay seems to work in three major functional pathways—cell division, transport, metabolic and enzymatic in general. Studying the host-virus crosstalk for lytic phase predicts ORF 10 and ORF 11 as a predicted virus hub whereas PCNA is predicted as a host hub. On the other hand, ORF31 has been predicted as a latent phase inducible protein. KSHV invests a lion’s share of its coding potential to suppress host immune response; various inflammatory mediators such as IFN-γ, TNF, IL-6, and IL-8 are negatively regulated by the ORFs while Il-10 secretion is stimulated in contrast. Although, like any other computational prediction, the study requires further validation, keeping into account the reproducibility and vast sample size of the systems biology approach the study allows us to propose an integrated network for host-virus interaction with good confidence. We hope that the study, in the long run, would help us identify effective dug against potential molecular targets.


Kaposi sarcoma Herpes virus 8 Protein–protein interaction Gene regulatory network Host-virus crosstalk Immunosuppression 

Supplementary material

11262_2012_865_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 73 kb)
11262_2012_865_MOESM2_ESM.docx (27 kb)
Supplementary material 2 (DOCX 28 kb)
11262_2012_865_MOESM3_ESM.xlsx (1.8 mb)
Supplementary material 3 (XLSX 1869 kb)
11262_2012_865_MOESM4_ESM.xlsx (12 kb)
Supplementary material 4 (XLSX 12 kb)
11262_2012_865_MOESM5_ESM.pdf (263 kb)
Supplementary material 5 (PDF 264 kb)
11262_2012_865_MOESM6_ESM.pdf (273 kb)
Supplementary material 6 (PDF 274 kb)
11262_2012_865_MOESM7_ESM.csv (7 kb)
Supplementary material 7 (CSV 8 kb)
11262_2012_865_MOESM8_ESM.docx (4 mb)
Supplementary material 8 (DOCX 4113 kb)
11262_2012_865_MOESM9_ESM.docx (22 kb)
Supplementary material 9 (DOCX 22 kb)
11262_2012_865_MOESM10_ESM.docx (24 kb)
Supplementary material 10 (DOCX 25 kb)


  1. 1.
    W. Kempf, V. Adams, Viruses in the pathogenesis of Kaposi’s sarcoma—a review. Biochem. Mol. Med. 58(1), 1–12 (1996)PubMedCrossRefGoogle Scholar
  2. 2.
    J. Armes, A review of Kaposi’s sarcoma. Adv. Cancer Res. 53, 73–87 (1989)PubMedCrossRefGoogle Scholar
  3. 3.
    S. Zurrida et al., Classic Kaposi’s sarcoma: a review of 90 cases. J. Dermatol. 19(9), 548–552 (1992)PubMedGoogle Scholar
  4. 4.
    B. Safai, Kaposi’s sarcoma: a review of the classical and epidemic forms. Ann. N. Y. Acad. Sci. 437, 373–382 (1984)PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Akasbi et al., Non-HIV Kaposi’s sarcoma: a review and therapeutic perspectives. Bull. Cancer 99(10), 92–99 (2012)Google Scholar
  6. 6.
    R.T. Mitsuyasu, AIDS-related Kaposi’s sarcoma: a review of its pathogenesis and treatment. Blood Rev. 2(4), 222–231 (1988)PubMedCrossRefGoogle Scholar
  7. 7.
    M. Stein et al., AIDS-related Kaposi’s sarcoma: a review. Isr. J. Med. Sci. 30(4), 298–305 (1994)PubMedGoogle Scholar
  8. 8.
    M.I. Febrer Bosch et al., [Kaposi’s sarcoma associated with human immunodeficiency virus infection: a clinical, histological, immunohistochemical, serological and development review]. Med. Clin. (Barc) 96(16), 601–606 (1991)Google Scholar
  9. 9.
    V. Ramirez-Amador, G. Anaya-Saavedra, G. Martinez-Mata, Kaposi’s sarcoma of the head and neck: a review. Oral. Oncol. 46(3), 135–145 (2010)Google Scholar
  10. 10.
    F. Bahia, C. Brites, Human herpes virus 8 and Kaposi’s sarcoma: a review. Braz J Infect Dis 3(5), 166–175 (1999)PubMedGoogle Scholar
  11. 11.
    R.D. Hunt, L.V. Melendez, Herpes virus infections of non-human primates: a review. Lab Anim Care 19(2), 221–234 (1969)PubMedGoogle Scholar
  12. 12.
    P.F. Finelli, Herpes simplex virus and the human nervous system: current concepts and review. Mil. Med. 140(11), 765–771 (1975)PubMedGoogle Scholar
  13. 13.
    R. Sarid et al., Characterization and cell cycle regulation of the major Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J. Virol. 73(2), 1438–1446 (1999)PubMedGoogle Scholar
  14. 14.
    S. Sadagopan et al., Kaposi’s sarcoma-associated herpesvirus-induced angiogenin plays roles in latency via the phospholipase C gamma pathway: blocking angiogenin inhibits latent gene expression and induces the lytic cycle. J. Virol. 85(6), 2666–2685 (2011)Google Scholar
  15. 15.
    L.A. Belopasova, Z.V. Markina, Kaposi’s sarcoma associated with acute leukemia. Klin Med (Mosk) 53(6), 117–118 (1975)Google Scholar
  16. 16.
    G. Babini, A case of Kaposi’s disease associated with chronic lymphatic leukemia. Arch Ital Dermatol Venereol Sessuol 34(6), 450–462 (1966)PubMedGoogle Scholar
  17. 17.
    W.I. Dotz, B. Berman, Kaposi’s sarcoma, chronic ulcerative herpes simplex, and acquired immunodeficiency. Arch. Dermatol. 119(1), 93–94 (1983)PubMedCrossRefGoogle Scholar
  18. 18.
    L. Wang et al., Identification and functional characterization of a spliced rhesus rhadinovirus gene with homology to the K15 gene of Kaposi’s sarcoma-associated herpesvirus. J. Gen. Virol. 90(Pt 5), 1190–1201 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    M. Glenn et al., Identification of a spliced gene from Kaposi’s sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J. Virol. 73(8), 6953–6963 (1999)PubMedGoogle Scholar
  20. 20.
    C.C. Rossetto, G. Pari, KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome. PLoS Pathog. 8(5), e1002680 (2012)Google Scholar
  21. 21.
    B.R. Jackson et al., An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in herpesvirus intronless mRNA export. PLoS Pathog. 7(7), e1002138 (2011)Google Scholar
  22. 22.
    A. Seifi et al., The lytic activation of KSHV during keratinocyte differentiation is dependent upon a suprabasal position, the loss of integrin engagement, and calcium, but not the interaction of cadherins. Virology 410(1), 17–29 (2011)Google Scholar
  23. 23.
    A. Papugani et al., The interaction between KSHV RTA and cellular RBP-Jkappa and their subsequent DNA binding are not sufficient for activation of RBP-Jkappa. Virus Res. 131(1), 1–7 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Liang et al., The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev. 16(15), 1977–1989 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    A.S. Madrid, D. Ganem, Kaposi’s sarcoma-associated herpesvirus ORF54/dUTPase downregulates a ligand for the NK activating receptor NKp44. J. Virol. 86(16), 8693–8704 (2012)Google Scholar
  26. 26.
    R. Chen, H. Wang, L.M. Mansky, Roles of uracil-DNA glycosylase and dUTPase in virus replication. J. Gen. Virol. 83(Pt 10), 2339–2345 (2002)PubMedGoogle Scholar
  27. 27.
    J. Fleischmann et al., Expression of viral and human dUTPase in Epstein-Barr virus-associated diseases. J. Med. Virol. 68(4), 568–573 (2002)PubMedCrossRefGoogle Scholar
  28. 28.
    M. Tategu et al., Systems biology-based identification of crosstalk between E2F transcription factors and the Fanconi anemia pathway. Gene Regul Syst Bio 1, 1–8 (2007)PubMedGoogle Scholar
  29. 29.
    H.V. Westerhoff, Systems biology: new paradigms for cell biology and drug design. Ernst Schering Res Found Workshop 61, 45–67 (2007)PubMedCrossRefGoogle Scholar
  30. 30.
    M.P. Stumpf et al., Systems biology and its impact on anti-infective drug development. Prog. Drug Res. 64, 1, 3–20 (2007)Google Scholar
  31. 31.
    K.W. Kohn et al., Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol. Biol. Cell 17(1), 1–13 (2006)PubMedCrossRefGoogle Scholar
  32. 32.
    S. Bader, S. Kuhner, A.C. Gavin, Interaction networks for systems biology. FEBS Lett. 582(8), 1220–1224 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    E.M. Damm, L. Pelkmans, Systems biology of virus entry in mammalian cells. Cell. Microbiol. 8(8), 1219–1227 (2006)PubMedCrossRefGoogle Scholar
  34. 34.
    L. Pelkmans, Systems biology of virus infection in mammalian cells. Curr. Opin. Microbiol. 12(4), 429–431 (2009)PubMedCrossRefGoogle Scholar
  35. 35.
    X. Peng et al., Virus-host interactions: from systems biology to translational research. Curr. Opin. Microbiol. 12(4), 432–438 (2009)PubMedCrossRefGoogle Scholar
  36. 36.
    P.A. Silver, J.C. Way, Molecular systems biology in drug development. Clin. Pharmacol. Ther. 82(5), 586–590 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    B.S. Chen et al., A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining. BMC Med. Genomics 1, 46 (2008)PubMedCrossRefGoogle Scholar
  38. 38.
    M. Green, Adenoviruses-model systems of virus replication, human cell molecular biology, and neoplastic transformation. Perspect. Biol. Med. 21(3), 373–397 (1978)PubMedGoogle Scholar
  39. 39.
    Q. Xue, K. Miller-Jensen, Systems biology of virus-host signaling network interactions. BMB Rep. 45(4), 213–220 (2012)Google Scholar
  40. 40.
    H. Si, S.C. Verma, E.S. Robertson, Proteomic analysis of the Kaposi’s sarcoma-associated herpesvirus terminal repeat element binding proteins. J. Virol. 80(18), 9017–9030 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    S. Peri et al., Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13(10), 2363–2371 (2003)PubMedCrossRefGoogle Scholar
  42. 42.
    B. Lehner, A.G. Fraser, A first-draft human protein-interaction map. Genome Biol. 5(9), R63 (2004)PubMedCrossRefGoogle Scholar
  43. 43.
    L.R. Matthews et al., Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or interologs. Genome Res. 11(12), 2120–2126 (2001)PubMedCrossRefGoogle Scholar
  44. 44.
    K. Lan, D.A. Kuppers, E.S. Robertson, Kaposi’s sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway. J. Virol. 79(6), 3468–3478 (2005)PubMedCrossRefGoogle Scholar
  45. 45.
    M. Valiya Veettil et al., Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi’s sarcoma-associated herpesvirus. PLoS Pathog. 6(12), e1001238 (2010)Google Scholar
  46. 46.
    M.L. Villa, E. Bombardieri, LYDMA-antigens and immunity against EBV-infected cells Epstein-Barr virus as a model for the study of host-infection interaction. Int. J. Biol. Markers 2(2), 125–132 (1987)PubMedGoogle Scholar
  47. 47.
    B.B. Rundell, R.F. Betts, Interaction of cytomegalovirus immune complexes with host cells. Infect. Immun. 33(3), 658–665 (1981)PubMedGoogle Scholar
  48. 48.
    J. Vanover et al., Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence. Microbiology 156(Pt 5), 1294–1302 (2010)Google Scholar
  49. 49.
    D. Szklarczyk et al., The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39(database issue), D561–D568 (2010)Google Scholar
  50. 50.
    G.D. Bader, D. Betel, C.W. Hogue, BIND: the biomolecular interaction network database. Nucleic Acids Res. 31(1), 248–250 (2003)PubMedCrossRefGoogle Scholar
  51. 51.
    Y. Palacios-Rodriguez et al., Polypeptide modulators of caspase recruitment domain (CARD)-CARD-mediated protein–protein interactions. J. Biol. Chem. 286(52), 44457–44466 (2011)Google Scholar
  52. 52.
    K. Hofmann, P. Bucher, J. Tschopp, The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22(5), 155–156 (1997)PubMedCrossRefGoogle Scholar
  53. 53.
    S. Gargiulo et al., Plaque oxysterols induce unbalanced up-regulation of matrix metalloproteinase-9 in macrophagic cells through redox-sensitive signaling pathways: Implications regarding the vulnerability of atherosclerotic lesions. Free Radic. Biol. Med. 51(4), 844–855 (2011)Google Scholar
  54. 54.
    I.A. Buhimschi et al., Reduction-oxidation (redox) state regulation of matrix metalloproteinase activity in human fetal membranes. Am. J. Obstet. Gynecol. 182(2), 458–464 (2000)PubMedCrossRefGoogle Scholar
  55. 55.
    J.A. Liang et al., Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol. 75(1), 151–157 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    M. Durigova et al., MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol. 30(2), 145–153 (2011)Google Scholar
  57. 57.
    P. Casoli, B. Tumiati, Kaposi’s sarcoma, rheumatoid arthritis and immunosuppressive and/or corticosteroid therapy. J. Rheumatol. 19(8), 1316–1317 (1992)PubMedGoogle Scholar
  58. 58.
    M.W. Schottstaedt, E.R. Hurd, M.J. Stone, Kaposi’s sarcoma in rheumatoid arthritis. Am. J. Med. 82(5), 1021–1026 (1987)PubMedCrossRefGoogle Scholar
  59. 59.
    H. Stanton et al., ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434(7033), 648–652 (2005)PubMedCrossRefGoogle Scholar
  60. 60.
    D.R. McCulloch et al., Adamts5, the gene encoding a proteoglycan-degrading metalloprotease, is expressed by specific cell lineages during mouse embryonic development and in adult tissues. Gene Expr. Patterns 9(5), 314–323 (2009)PubMedCrossRefGoogle Scholar
  61. 61.
    G.A. Escobar et al., Clathrin heavy chain is required for TNF-induced inflammatory signaling. Surgery 140(2), 268–272 (2006)PubMedCrossRefGoogle Scholar
  62. 62.
    Y.C. Yu et al., A putative lytic transglycosylase tightly regulated and critical for the EHEC type three secretion. J. Biomed. Sci. 17, 52 (2010)Google Scholar
  63. 63.
    B.W. Dijkstra, A.M. Thunnissen, ‘Holy’ proteins. II: the soluble lytic transglycosylase. Curr. Opin. Struct. Biol. 4(6), 810–813 (1994)PubMedCrossRefGoogle Scholar
  64. 64.
    C.F. Pasaje et al., Lack of association of RAD51 genetic variations with hepatitis B virus clearance and occurrence of hepatocellular carcinoma in a Korean population. J. Med. Virol. 83(11), 1892–1899 (2011)Google Scholar
  65. 65.
    B. Bagewadi et al., PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. J. Virol. 78(21), 11890–11903 (2004)PubMedCrossRefGoogle Scholar
  66. 66.
    J. Ehrmann Jr et al., Apoptosis-related proteins, BCL-2, BAX, FAS, FAS-L and PCNA in liver biopsies of patients with chronic hepatitis B virus infection. Pathol Oncol Res 6(2), 130–135 (2000)PubMedCrossRefGoogle Scholar
  67. 67.
    Z.Y. Jin, G.R. Qi, C.D. Lu, Expression of anti-PCNA mRNA ribozyme by T7 vaccinia virus system in HeLa Cells. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 29(1), 107–109 (1997)Google Scholar
  68. 68.
    P. Kanavaros et al., Mycosis fungoides: expression of C-myc p62 p53, bcl-2 and PCNA proteins and absence of association with Epstein-Barr virus. Pathol. Res. Pract. 190(8), 767–774 (1994)PubMedCrossRefGoogle Scholar
  69. 69.
    R. Luzzatto, M.M. Bosch, M.E. Boon, Proliferating cell nuclear antigen (PCNA) in herpes virus infected cells. Diagn. Cytopathol. 10(3), 304 (1994)PubMedCrossRefGoogle Scholar
  70. 70.
    D.H. Dreyfus et al., Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-kappaB and p53. Virol. J. 8, 422 (2011)Google Scholar
  71. 71.
    L. Chen et al., Induction of Epstein-Barr virus lytic replication by recombinant adenoviruses expressing the zebra gene with EBV specific promoters. Acta Biochim. Biophys. Sin. (Shanghai) 37(4), 215–220 (2005)CrossRefGoogle Scholar
  72. 72.
    D.H. Dreyfus et al., Inactivation of NF-kappaB by EBV BZLF-1-encoded ZEBRA protein in human T cells. J Immunol 163(11), 6261–6268 (1999)PubMedGoogle Scholar
  73. 73.
    E. Drouet et al., High Epstein-Barr virus serum load and elevated titers of anti-ZEBRA antibodies in patients with EBV-harboring tumor cells of Hodgkin’s disease. J. Med. Virol. 57(4), 383–389 (1999)PubMedCrossRefGoogle Scholar
  74. 74.
    Y.J. Chen et al., Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi’s sarcoma-associated herpesvirus lytic reactivations in 293 cells. PLoS One 6(3), e17809 (2011)Google Scholar
  75. 75.
    S. Pepperl et al., Immediate-early transactivator Rta of Epstein-Barr virus (EBV) shows multiple epitopes recognized by EBV-specific cytotoxic T lymphocytes. J. Virol. 72(11), 8644–8649 (1998)PubMedGoogle Scholar
  76. 76.
    R.A. Bish, M.P. Myers, Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain. J. Biol. Chem. 282(32), 23184–23193 (2007)PubMedCrossRefGoogle Scholar
  77. 77.
    T. Tsurimoto et al., Human Werner helicase interacting protein 1 (WRNIP1) functions as a novel modulator for DNA polymerase delta. Genes Cells 10(1), 13–22 (2005)PubMedCrossRefGoogle Scholar
  78. 78.
    M.M. Nijkamp et al., Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother. Oncol. 99(3), 344–348 (2011)Google Scholar
  79. 79.
    P.T. Nguyen et al., N-cadherin expression is correlated with metastasis of spindle cell carcinoma of head and neck region. J. Oral. Pathol. Med. 40(1), 77–82 (2011)Google Scholar
  80. 80.
    A. Gori, Reversible diabetes in patient with AIDS-related Kaposi’s Sarcoma treated with Interferon $alpha;-2a. The Lancet 345(8962), 1438–1439 (1995)CrossRefGoogle Scholar
  81. 81.
    F. Ronchese, A.B. Kern, Kaposi’s sarcoma and diabetes mellitus. Arch. Dermatol. 67(1), 95–96 (1953)CrossRefGoogle Scholar
  82. 82.
    X. Shang et al., Tight junction proteins claudin-3 and claudin-4 control tumor growth and metastases. Neoplasia 14(10), 974–985 (2012)PubMedGoogle Scholar
  83. 83.
    M. Schneider et al., Absence of glutathione peroxidase 4 affects tumor angiogenesis through increased 12/15-lipoxygenase activity. Neoplasia 12(3), 254–263 (2010)Google Scholar
  84. 84.
    Britt Glaunsinger, Don Ganem, Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J. Exp. Med. 200(3), 391–398 (2004)PubMedCrossRefGoogle Scholar
  85. 85.
    Britt Glaunsinger, Don Ganem, Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol. Cell 13(5), 713–723 (2004)PubMedCrossRefGoogle Scholar
  86. 86.
    L.S. Barcelos et al., Role of the chemokines CCL3/MIP-1α and CCL5/RANTES in sponge-induced inflammatory angiogenesis in mice. Microvasc. Res. 78(2), 148–154 (2009)Google Scholar
  87. 87.
    A. Scorilas et al., Identification and characterization of a novel human testis-specific kinase substrate gene which is downregulated in testicular tumors. Biochem. Biophys. Res. Commun. 285(2), 400–408 (2001)PubMedCrossRefGoogle Scholar
  88. 88.
    Yasuhito Onodera et al., Rab5c promotes AMAP1–PRKD2 complex formation to enhance Β1 integrin recycling in EGF-induced cancer invasion. The Journal of Cell Biology 197(7), 983–996 (2012)PubMedCrossRefGoogle Scholar
  89. 89.
    H.W. Sharma et al., Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res. 16(1), 61–69 (1996)PubMedGoogle Scholar
  90. 90.
    S. Landi et al., Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor Α, NFKB1, and peroxisome proliferator-activated receptor γ with colorectal cancer. Cancer Res. 63(13), 3560–3566 (2003)PubMedGoogle Scholar
  91. 91.
    E.M. Hurt et al., Overexpression of C-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5(2), 191–199 (2004)Google Scholar
  92. 92.
    T. Suzuki et al., Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. The EMBO Journal 25(14), 3422–3431 (2006)PubMedCrossRefGoogle Scholar
  93. 93.
    A. Zaman, Characterization of Coilin protein nucleotide binding region in Homo sapiens. Online J. Bioinform. 13(2), 314–330 (2012)Google Scholar
  94. 94.
    V.A. Morris et al., The KSHV viral IL-6 homolog is sufficient to induce blood to lymphatic endothelial cell differentiation. Virology 428(2), 112–120 (2012)Google Scholar
  95. 95.
    M.J. Endres et al., The Kaposi’s sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J. Exp. Med. 189(12), 1993–1998 (1999)PubMedCrossRefGoogle Scholar
  96. 96.
    I. Guasparri et al., KSHV vFLIP is essential for the survival of infected lymphoma cells. J. Exp. Med. 199(7), 993–1003 (2004)PubMedCrossRefGoogle Scholar
  97. 97.
    Van Drosset et al., Constitutively active K-cyclin/cdk6 kinase in Kaposi Sarcoma-associated herpesvirus-infected cells. J. Natl Cancer Inst. 97(9), 656–666 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Aubhishek Zaman
    • 1
  • Md. Habibur Rahaman
    • 1
  • Samsad Razzaque
    • 2
  1. 1.Department of Genetic Engineering and BiotechnologyUniversity of DhakaDhakaBangladesh
  2. 2.Biotechnology Program, Department of Mathematics and Natural ScienceBRAC UniversityDhakaBangladesh

Personalised recommendations