Virus Genes

, Volume 46, Issue 2, pp 271–279 | Cite as

A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV

  • Jian-hua Zhou
  • Zong-liang Gao
  • Dong-jie Sun
  • Yao-zhong Ding
  • Jie Zhang
  • Laszlo Stipkovits
  • Susan Szathmary
  • Zygmunt Pejsak
  • Yong-sheng Liu
Article

Abstract

The synonymous codon usage pattern of African swine fever virus (ASFV), the similarity degree of the synonymous codon usage between this virus and some organisms and the synonymous codon usage bias for the translation initiation region of viral functional genes in the whole genome of ASFV have been investigated by some simply statistical analyses. Although both GC12% (the GC content at the first and second codon positions) and GC3% (the GC content at the third codon position) of viral functional genes have a large fluctuation, the significant correlations between GC12 and GC3% and between GC3% and the first principal axis of principle component analysis on the relative synonymous codon usage of the viral functional genes imply that mutation pressure of ASFV plays an important role in the synonymous codon usage pattern. Turning to the synonymous codon usage of this virus, the codons with U/A end predominate in the synonymous codon family for the same amino acid and a weak codon usage bias in both leading and lagging strands suggests that strand compositional asymmetry does not take part in the formation of codon usage in ASFV. The interaction between the absolute codon usage bias and GC3% suggests that other selections take part in the formation of codon usage, except for the mutation pressure. It is noted that the similarity degree of codon usage between ASFV and soft tick is higher than that between the virus and the pig, suggesting that the soft tick plays a more important role than the pig in the codon usage pattern of ASFV. The translational initiation region of the viral functional genes generally have a strong tendency to select some synonymous codons with low GC content, suggesting that the synonymous codon usage bias caused by translation selection from the host takes part in modulating the translation initiation efficiency of ASFV functional genes.

Keywords

African swine fever virus Synonymous codon usage Mutation pressure Translation selection Translational initiation region 

Notes

Acknowledgments

This study was supported in parts by grants International Science & Technology Cooperation Program of China (No. 2010DFA32640 and No. 2012DFG31890) and Gansu Provincial Funds for Distinguished Young Scientists. This study was also supported by the National Natural Science foundation of China (No. 31172335 and No. 31072143).

Supplementary material

11262_2012_847_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 84 kb)
11262_2012_847_MOESM2_ESM.tif (33 kb)
Fig. S1 The usage bias of synonymous codons for Ala in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 32 kb)
11262_2012_847_MOESM3_ESM.tif (33 kb)
Fig. S2 The preference of synonymous codons for Asp, Glu, and Cys in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)
11262_2012_847_MOESM4_ESM.tif (34 kb)
Fig. S3 The preference of synonymous codons for Phe, Tyr, and His in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)
11262_2012_847_MOESM5_ESM.tif (32 kb)
Fig. S4 The preference of synonymous codons for Gly in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 31 kb)
11262_2012_847_MOESM6_ESM.tif (33 kb)
Fig. S5 The preference of synonymous codons for Leu in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)
11262_2012_847_MOESM7_ESM.tif (31 kb)
Fig. S6 The preference of synonymous codons for Pro in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 31 kb)
11262_2012_847_MOESM8_ESM.tif (33 kb)
Fig. S7 The preference of synonymous codons for Gln, Asn, and Lys in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 32 kb)
11262_2012_847_MOESM9_ESM.tif (32 kb)
Fig. S8 The preference of synonymous codons for Arg in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 32 kb)
11262_2012_847_MOESM10_ESM.tif (33 kb)
Fig. S9 The preference of synonymous codons for Ser in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 33 kb)
11262_2012_847_MOESM11_ESM.tif (31 kb)
Fig. S10 The preference of synonymous codons for Thr in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 30 kb)
11262_2012_847_MOESM12_ESM.tif (31 kb)
Fig. S11 The preference of synonymous codons for Val in different length (the first 5 codons, the first 10 codons, the first 15 codons, the first 20 codons, the first 25 codons, and the first 30 codons) of the translation initiation region (the first 30 codons) in the functional genes of ASFV genome (TIFF 31 kb)

References

  1. 1.
    C.A. Mebus, Adv. Virus Res. 35, 251–269 (1988)CrossRefPubMedGoogle Scholar
  2. 2.
    R. Blasco, M. Aguero, J.M. Almendral, E. Vinuela, Virology 168, 330–338 (1989)CrossRefPubMedGoogle Scholar
  3. 3.
    S.B. Kleiboeker, G.A. Scoles, Anim. Health Res. Rev. 2, 121–128 (2001)PubMedGoogle Scholar
  4. 4.
    F. Almazan, J.M. Rodriguez, G. Andres, R. Perez, E. Vinuela, J.F. Rodriguez, J. Virol. 66, 6655–6667 (1992)PubMedGoogle Scholar
  5. 5.
    J.M. Almendral, F. Almazan, R. Blasco, E. Vinuela, J. Virol. 64, 2064–2072 (1990)PubMedGoogle Scholar
  6. 6.
    I. de la Vega, E. Vinuela, R. Blasco, Virology 179, 234–246 (1990)CrossRefPubMedGoogle Scholar
  7. 7.
    S. Gonzalez, C. Mendoza, J.M. Sanchez-Vizcaino, F. Alonso, Vet. Immunol. Immunopathol. 26, 71–80 (1990)CrossRefPubMedGoogle Scholar
  8. 8.
    T. Yozawa, G.F. Kutish, C.L. Afonso, Z. Lu, D.L. Rock, Virology 202, 997–1002 (1994)CrossRefPubMedGoogle Scholar
  9. 9.
    C. Carrillo, M.V. Borca, C.L. Afonso, D.V. Onisk, D.L. Rock, J. Virol. 68, 580–583 (1994)PubMedGoogle Scholar
  10. 10.
    D.E. Detray, Am. J. Vet. Res. 18, 811–816 (1957)PubMedGoogle Scholar
  11. 11.
    W.P. Heuschele, L. Coggins, Bull. Epizoot. Dis. Afr. 17, 179–183 (1969)PubMedGoogle Scholar
  12. 12.
    S.B. Kleiboeker, G.F. Kutish, J.G. Neilan, Z. Lu, L. Zsak, D.L. Rock, J. Gen. Virol. 79(Pt 5), 1189–1195 (1998)PubMedGoogle Scholar
  13. 13.
    H. Akashi, Gene 205, 269–278 (1997)CrossRefPubMedGoogle Scholar
  14. 14.
    F. Bagnoli, P. Lio, J. Theor. Biol. 173, 271–281 (1995)CrossRefPubMedGoogle Scholar
  15. 15.
    M. Bulmer, Genetics 129, 897–907 (1991)PubMedGoogle Scholar
  16. 16.
    A. Pan, C. Dutta, J. Das, Gene 215, 405–413 (1998)CrossRefPubMedGoogle Scholar
  17. 17.
    P.M. Sharp, W.H. Li, J. Mol. Evol. 24, 28–38 (1986)CrossRefPubMedGoogle Scholar
  18. 18.
    E.H. Wong, D.K. Smith, R. Rabadan, M. Peiris, L.L. Poon, BMC Evol. Biol. 10, 253 (2010)CrossRefPubMedGoogle Scholar
  19. 19.
    A. Canals, F. Alonso, J. Tomillo, J. Dominguez, Vet. Microbiol. 33, 117–127 (1992)CrossRefPubMedGoogle Scholar
  20. 20.
    I. Casal, L. Enjuanes, E. Vinuela, J. Virol. 52, 37–46 (1984)PubMedGoogle Scholar
  21. 21.
    L. Enjuanes, A.L. Carrascosa, E. Vinuela, J. Gen. Virol. 32, 479–492 (1976)CrossRefPubMedGoogle Scholar
  22. 22.
    A. Gonzalez, V. Calvo, F. Almazan, J.M. Almendral, J.C. Ramirez, I. de la Vega, R. Blasco, E. Vinuela, J. Virol. 64, 2073–2081 (1990)PubMedGoogle Scholar
  23. 23.
    A. Brun, C. Rivas, M. Esteban, J.M. Escribano, C. Alonso, Virology 225, 227–230 (1996)CrossRefPubMedGoogle Scholar
  24. 24.
    M.L. Nogal, G. Gonzalez de Buitrago, C. Rodriguez, B. Cubelos, A.L. Carrascosa, M.L. Salas, Y. Revilla, J. Virol. 75, 2535–2543 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    C.A. Oura, P.P. Powell, R.M. Parkhouse, J. Gen. Virol. 79(Pt 6), 1427–1438 (1998)PubMedGoogle Scholar
  26. 26.
    Y. Revilla, A. Cebrian, E. Baixeras, C. Martinez, E. Vinuela, M.L. Salas, Virology 228, 400–404 (1997)CrossRefPubMedGoogle Scholar
  27. 27.
    C.I. Rodriguez, M.L. Nogal, A.L. Carrascosa, M.L. Salas, M. Fresno, Y. Revilla, J. Virol. 76, 3936–3942 (2002)CrossRefPubMedGoogle Scholar
  28. 28.
    L.K. Dixon, C.C. Abrams, G. Bowick, L.C. Goatley, P.C. Kay-Jackson, D. Chapman, E. Liverani, R. Nix, R. Silk, F. Zhang, Vet. Immunol. Immunopathol. 100, 117–134 (2004)CrossRefPubMedGoogle Scholar
  29. 29.
    A.G. Granja, M.L. Nogal, C. Hurtado, C. Del Aguila, A.L. Carrascosa, M.L. Salas, M. Fresno, Y. Revilla, J Immunol 176, 451–462 (2006)PubMedGoogle Scholar
  30. 30.
    J.E. Miskin, C.C. Abrams, L.K. Dixon, J. Virol. 74, 9412–9420 (2000)CrossRefPubMedGoogle Scholar
  31. 31.
    F.J. Salguero, S. Gil, Y. Revilla, C. Gallardo, M. Arias, C. Martins, Vet. Immunol. Immunopathol. 124, 107–119 (2008)CrossRefPubMedGoogle Scholar
  32. 32.
    Y. Nakamura, T. Gojobori, T. Ikemura, Nucleic Acids Res. 28, 292 (2000)CrossRefPubMedGoogle Scholar
  33. 33.
    F. Wright, Gene 87, 23–29 (1990)CrossRefPubMedGoogle Scholar
  34. 34.
    H. Ohno, H. Sakai, T. Washio, M. Tomita, Gene 276, 107–115 (2001)CrossRefPubMedGoogle Scholar
  35. 35.
    J.H. Zhou, J. Zhang, H.T. Chen, L.N. Ma, Y.Z. Ding, Z. Pejsak, Y.S. Liu, Infect. Genet. Evol. 11, 1815–1819 (2011)CrossRefPubMedGoogle Scholar
  36. 36.
    S.K. Gupta, T.C. Ghosh, Gene 273, 63–70 (2001)CrossRefPubMedGoogle Scholar
  37. 37.
    S. Das, S. Paul, C. Dutta, Virus Res. 117, 227–236 (2006)CrossRefPubMedGoogle Scholar
  38. 38.
    L. Duret, Curr. Opin. Genet. Dev. 12, 640–649 (2002)CrossRefPubMedGoogle Scholar
  39. 39.
    I. Bahir, M. Fromer, Y. Prat, M. Linial, Mol. Syst. Biol. 5, 311 (2009)CrossRefPubMedGoogle Scholar
  40. 40.
    S. Karlin, J. Mrazek, J. Mol. Biol. 262, 459–472 (1996)CrossRefPubMedGoogle Scholar
  41. 41.
    H. Romero, A. Zavala, H. Musto, Nucleic Acids Res. 28, 2084–2090 (2000)CrossRefPubMedGoogle Scholar
  42. 42.
    J.W. Drake, J.J. Holland, Proc. Natl. Acad. Sci. USA 96, 13910–13913 (1999)CrossRefPubMedGoogle Scholar
  43. 43.
    R.J. Nix, C. Gallardo, G. Hutchings, E. Blanco, L.K. Dixon, Arch. Virol. 151, 2475–2494 (2006)CrossRefPubMedGoogle Scholar
  44. 44.
    K.J. Sumption, G.H. Hutchings, P.J. Wilkinson, L.K. Dixon, J. Gen. Virol. 71(Pt 10), 2331–2340 (1990)CrossRefPubMedGoogle Scholar
  45. 45.
    L. Zsak, Z. Lu, T.G. Burrage, J.G. Neilan, G.F. Kutish, D.M. Moore, D.L. Rock, J. Virol. 75, 3066–3076 (2001)CrossRefPubMedGoogle Scholar
  46. 46.
    T.G. Burrage, Z. Lu, J.G. Neilan, D.L. Rock, L. Zsak, J. Virol. 78, 2445–2453 (2004)CrossRefPubMedGoogle Scholar
  47. 47.
    R.J. Rowlands, M.M. Duarte, F. Boinas, G. Hutchings, L.K. Dixon, Virology 393, 319–328 (2009)CrossRefPubMedGoogle Scholar
  48. 48.
    B.P. Cormack, G. Bertram, M. Egerton, N.A. Gow, S. Falkow, A.J. Brown, Microbiology 143(Pt 2), 303–311 (1997)CrossRefPubMedGoogle Scholar
  49. 49.
    C.H. Kim, Y. Oh, T.H. Lee, Gene 199, 293–301 (1997)CrossRefPubMedGoogle Scholar
  50. 50.
    T. Mirzabekov, N. Bannert, M. Farzan, W. Hofmann, P. Kolchinsky, L. Wu, R. Wyatt, J. Sodroski, J. Biol. Chem. 274, 28745–28750 (1999)CrossRefPubMedGoogle Scholar
  51. 51.
    P.M. Sharp, K.M. Devine, Nucleic Acids Res. 17, 5029–5039 (1989)CrossRefPubMedGoogle Scholar
  52. 52.
    M. Uchijima, A. Yoshida, T. Nagata, Y. Koide, J Immunol 161, 5594–5599 (1998)PubMedGoogle Scholar
  53. 53.
    G. Zhang, V. Gurtu, S.R. Kain, Biochem. Biophys. Res. Commun. 227, 707–711 (1996)CrossRefPubMedGoogle Scholar
  54. 54.
    M. Welch, A. Villalobos, C. Gustafsson, J. Minshull, J. R. Soc. Interface 6(Suppl 4), S467–S476 (2009)CrossRefPubMedGoogle Scholar
  55. 55.
    G.T. Chen, M. Inouye, Genes Dev. 8, 2641–2652 (1994)CrossRefPubMedGoogle Scholar
  56. 56.
    A. Eyre-Walker, M. Bulmer, Nucleic Acids Res. 21, 4599–4603 (1993)CrossRefPubMedGoogle Scholar
  57. 57.
    C.M. Stenstrom, E. Holmgren, L.A. Isaksson, Gene 273, 259–265 (2001)CrossRefPubMedGoogle Scholar
  58. 58.
    C.M. Stenstrom, H. Jin, L.L. Major, W.P. Tate, L.A. Isaksson, Gene 263, 273–284 (2001)CrossRefPubMedGoogle Scholar
  59. 59.
    E.B. Vervoort, A. van Ravestein, N.N. van Peij, J.C. Heikoop, P.J. van Haastert, G.F. Verheijden, M.H. Linskens, Nucleic Acids Res. 28, 2069–2074 (2000)CrossRefPubMedGoogle Scholar
  60. 60.
    T. Tuller, Y.Y. Waldman, M. Kupiec, E. Ruppin, Proc. Natl. Acad. Sci. USA 107, 3645–3650 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jian-hua Zhou
    • 1
  • Zong-liang Gao
    • 1
  • Dong-jie Sun
    • 1
  • Yao-zhong Ding
    • 1
  • Jie Zhang
    • 1
  • Laszlo Stipkovits
    • 2
  • Susan Szathmary
    • 2
  • Zygmunt Pejsak
    • 3
  • Yong-sheng Liu
    • 1
  1. 1.State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference LaboratoryLanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhouPeople’s Republic of China
  2. 2.RT-Europe CenterBudapestHungary
  3. 3.Department of Swine DiseasesNational Veterinary Research InstitutePuławyPoland

Personalised recommendations