Virus Genes

, Volume 46, Issue 2, pp 354–361 | Cite as

The Nerium oleander aphid Aphis nerii is tolerant to a local isolate of Aphid lethal paralysis virus (ALPV)

Article

Abstract

In a survey that was conducted during the year 2011, a local strain of Aphid lethal paralysis virus (ALPV) was identified and isolated from a wild population of Aphis nerii aphids living on Nerium oleander plants located in northern Israel. The new strain was tentatively named (ALPV-An). RNA extracted from the viral particles allowed the amplification and determination of the complete genome sequence. The virus genome is comprised of 9835 nucleotides. In a BLAST search analysis, the ALPV-An sequence showed 89 % nucleotide sequence identity with the whole genome of a South African ALPV and 96 and 94 % amino acid sequence identity with the ORF1 and ORF2 of that strain, respectively. In preliminary experiments, spray-applied, purified ALPV virions were highly pathogenic to the green peach aphid Myzus persicae; 95 % mortality was recorded 4 days post-infection. These preliminary results demonstrate the potential of ALPV for use as a biologic agent for some aphid control. Surprisingly, no visible ALPV pathogenic effects, such as morphological changes or paralysis, were observed in the A. nerii aphids infected with ALPV-An. The absence of clear ALPV symptoms in A. nerii led to the formulation of two hypotheses, which were partially examined in this study. The first hypothesis suggest that A. nerii is resistant or tolerant of ALPV, while the second hypothesis propose that ALPV-An may be a mild strain of ALPV. Currently, our results is in favor with the first hypothesis since ALPV-An is cryptic in A. nerii aphids and can be lethal for M. persicae aphids.

Keywords

Aphid-pathogenic viruses Dicistroviridae Cripavirus Myzus persicae 

Supplementary material

11262_2012_846_MOESM1_ESM.tif (138 kb)
Prediction of the likelihood of phosphorylation across the putative amino acid sequence of ORF2. The NetPhos 2.0 Server (http://www.cbs.dtu.dk/services/NetPhos/) was used to predict the likelihood of phosphorylation of threonine (Thr), serine (Ser) and tyrosine (Tyr) residues across the entire ORF2 (808 aa). Forty-eight putative phosphorylation sites were identified: (24× Ser), (16× Thr) and (8× Tyr). Supplementary material 1 (TIFF 137 kb)

References

  1. 1.
    B. Raccah, A. Fereres, in Plant Virus Transmission by Insects. Encyclopedia of Life Sciences (Wiley, Chichester, 2009). http//wwwelsnet/[1]
  2. 2.
    V. Brault, E. Herrbach, C. Rodriguez-Medina, Encyclopedia of Life Sciences (Wiley, Chichester, 2011)Google Scholar
  3. 3.
    C. Williamson, E.P. Rybicki, G.G.F. Kasdorf, M.B. Vonwechmar, J. Gen. Virol. 69, 787–795 (1988)CrossRefGoogle Scholar
  4. 4.
    M. Van Munster, A.M. Dullemans, M. Verbeek, J.F. Van Den Heuvel, A. Clerivet, F. Van Der Wilk, J. Gen. Virol. 83, 3131–3138 (2002)PubMedGoogle Scholar
  5. 5.
    C.J. D’Arcy, P.A. Burnett, A.D. Hewings, R.M. Goodman, Virology 112, 346–349 (1981)PubMedCrossRefGoogle Scholar
  6. 6.
    F.E. Gildow, C.J. Darcy, J. Invertebr. Pathol. 55, 245–257 (1990)CrossRefGoogle Scholar
  7. 7.
    J.S. Moon, L.L. Domier, N.K. McCoppin, C.J. D’Arcy, H. Jin, Virology 243, 54–65 (1998)PubMedCrossRefGoogle Scholar
  8. 8.
    E.V. Ryabov, J. Gen. Virol. 88, 2590–2595 (2007)PubMedCrossRefGoogle Scholar
  9. 9.
    J.F.J.M. van den Heuvel, H. Hummelen, M. Verbeek, A.M. Dullemans, F. vander Wilk, J. Invertebr. Pathol. 70, 169–176 (1997)PubMedCrossRefGoogle Scholar
  10. 10.
    F. vanderWilk, A.M. Dullemans, M. Verbeek, J.F.J.M. vanden Heuvel, Virology. 238, 353–362 (1997)Google Scholar
  11. 11.
    M. van Munster, A.M. Dullemans, M. Verbeek, J.F. van den Heuvel, C. Reinbold, V. Brault, A. Clerivet, F. van der Wilk, J. Gen. Virol. 84, 165–172 (2003)PubMedCrossRefGoogle Scholar
  12. 12.
    M. van Munster, A.M. Dullemans, M. Verbeek, J.F. van den Heuvel, C. Reinbold, V. Brault, A. Clerivet, F. van der Wilk, J. Invertebr. Pathol. 84, 6–14 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    E.V. Ryabov, G. Keane, N. Naish, C. Evered, D. Winstanley, Proc. Natl. Acad. Sci. USA 106, 8465–8470 (2009)PubMedCrossRefGoogle Scholar
  14. 14.
    J.M. Laubscher, M.B. Vonwechmar, J. Invertebr. Pathol. 60, 134–140 (1992)CrossRefGoogle Scholar
  15. 15.
    J.M. Laubscher, M.B. Vonwechmar, Biocontrol Sci. Technol. 3, 455–466 (1993)CrossRefGoogle Scholar
  16. 16.
    C. Runckel, M.L. Flenniken, J.C. Engel, J.G. Ruby, D. Ganem, R. Andino, J.L. DeRisi, PLoS ONE 6, e20656 (2011)PubMedCrossRefGoogle Scholar
  17. 17.
    T. Hibi, I. Furuki, in Descriptions of Plant Viruses (no. 302) (Association of applied biologists, Wellesbourne, 1985)Google Scholar
  18. 18.
    A. Rosner, M. Bar-Joseph, M. Moskovitz, M. Mevarech, Phytopathology 73, 609–702 (1983)CrossRefGoogle Scholar
  19. 19.
    A. Dombrovsky, R. Sapkota, O. Lachman, Y. Antignus, Virus Genes 44, 329–337 (2012)PubMedCrossRefGoogle Scholar
  20. 20.
    U.K. Laemmli, Nature 227, 680–685 (1970)PubMedCrossRefGoogle Scholar
  21. 21.
    E. Jan, Virus Res. 119, 16–28 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    N. Nakashima, T. Uchiumi, Virus Res. 139, 137–147 (2009)PubMedCrossRefGoogle Scholar
  23. 23.
    B.C. Bonning, W.A. Miller, Annu. Rev. Entomol. 55, 129–150 (2010)PubMedCrossRefGoogle Scholar
  24. 24.
    J.E. Wilson, M.J. Powell, S.E. Hoover, P. Sarnow, Mol. Cell. Biol. 20, 4990–4999 (2000)PubMedCrossRefGoogle Scholar
  25. 25.
    K.E. Woolaway, K. Lazaridis, G.J. Belsham, M.J. Carter, L.O. Roberts, J. Virol. 175, 10244–10249 (2001)CrossRefGoogle Scholar
  26. 26.
    C. Czibener, D. Alvarez, E. Scodeller, A.V. Gamarnik, J. Gen. Virol. 86, 2275–2280 (2005)PubMedCrossRefGoogle Scholar
  27. 27.
    N. Shibuya, N. Nakashima, J. Gen. Virol. 87, 3679–3686 (2006)PubMedCrossRefGoogle Scholar
  28. 28.
    A.E. Gorbalenya, E.V. Koonin, A.P. Donchenko, V.M. Blinov, Nucl. Acids Res. 17, 4713–4730 (1989)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Allaire, M.M. Chernaia, B.A. Malcolm, M.N.G. James, Nature 369, 72–76 (1994)PubMedCrossRefGoogle Scholar
  30. 30.
    E.K. O’Reilly, C.C. Kao, Virology 252, 287–303 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    E.V. Koonin, V.V. Dolja, Crit. Rev. Biochem. Mol. 28, 375–430 (1993)CrossRefGoogle Scholar
  32. 32.
    X.H. Wang, R. Aliyari, W.X. Li, H.W. Li, K. Kim, R. Carthew, P. Atkinson, S.W. Ding, Science 312, 452–454 (2006)PubMedCrossRefGoogle Scholar
  33. 33.
    N. Blom, T. Sicheritz-Ponten, R. Gupta, S. Gammeltoft, S. Brunak, Proteomics 4, 1633–1649 (2004)PubMedCrossRefGoogle Scholar
  34. 34.
    X. Ge, Y. Li, X. Yang, H. Zhang, P. Zhou, Y. Zhang, Z. Shi, J. Virol. 86, 4620–4630 (2012)PubMedCrossRefGoogle Scholar
  35. 35.
  36. 36.
    A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz (eds), Virus taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier, Amsterdam, 2012)Google Scholar
  37. 37.
    S.J. Hatfill, C. Williamson, R. Kirby, M.B. Vonwechmar, J. Invertebr. Pathol. 55, 265–271 (1990)CrossRefGoogle Scholar
  38. 38.
    J.M. Laubscher, M.B. Vonwechmar, J. Invertebr. Pathol. 58, 52–56 (1991)CrossRefGoogle Scholar
  39. 39.
    M. Rothschild, J. von Euw, T. Reichstein, J. Insect Physiol. 16, 1141–1145 (1970)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Plant PathologyARO, The Volcani CenterBet DaganIsrael

Personalised recommendations