Virus Genes

, Volume 45, Issue 3, pp 575–580 | Cite as

Mutation rate in Velvet tobacco mottle virus varies between genomic region and virus variant but is not influenced by obligatory mirid transmission

Article

Abstract

Genomic mutation in plant viruses of cultivated plants is known to be influenced by virus, host and vector, but the factors influencing mutation in viruses of native plants in natural ecosystems are rarely studied. We have tested the effect of mode of transmission on mutation in Velvet tobacco mottle virus (VTMoV), a mirid-vectored sobemovirus associated with Nicotiana velutina, an Australian native xerophyte growing in a region isolated from anthropogenic influences. Two variants of VTMoV (K1 and R17) were passaged monthly in the alternative experimental plant host, N. clevelandii, for 2 years, either by mechanical inoculation or by transmission with the mirid Cyrtopeltisnicotianae. Sequence variations were scored after 24 passages in regions of the genome containing the open reading frames (ORFs) for the P1 and coat protein (CP). The mean mutation rate was 6.83 × 10−4 nt/site year, but a higher overall rate was observed for the K1 (satellite −) than the R17 (satellite +) variant. The P1 ORF showed a higher frequency of non-synonymous mutations than the CP. No clear association was found between either mutation site or mutation rate and the mode of transmission, indicating that obligatory mirid transmission had not exerted a specific bottle-neck effect on sequence variation during the experimental time frame. Failure to detect any sequence motifs linked to vector transmission suggests that a specific capsid-stylet interaction is not required for transmission by mirids.

Keywords

Cyrtopeltisnicotianae Mirid transmission Native plant virus Sobemovirus Velvet tobacco mottle virus Virus mutation rate 

References

  1. 1.
    C.M. Kearney, M.J. Thomson, K.E. Roland, Arch. Virol. 144, 1513–1526 (1999)PubMedCrossRefGoogle Scholar
  2. 2.
    A. Ali, M.J. Roossinck, Virology 404, 279–283 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    B. Moury, F. Fabre, R. Senoussi, Proc. Natl. Acad. Sci. 104, 17891–17896 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Betancourt, A. Fereres, A. Fraile, F. García-Arenal, J. Virol. 82, 12416–12421 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Ali, H. Li, W.L. Schneider, D.J. Sherman, S. Gray, D. Smith, M.J. Roossinck, J. Virol. 80, 8345–8350 (2006)PubMedCrossRefGoogle Scholar
  6. 6.
    C. Jridi, J.-F. Martin, V. Marie-Jeanne, G. Labonne, S. Blanc, J. Virol. 80, 2349–2357 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    H. Li, M. Roossinck, J. Virol. 78, 10582–10587 (2004)PubMedCrossRefGoogle Scholar
  8. 8.
    J.W. Randles, C. Davies, T. Hatta, A.R. Gould, R.I.B. Francki, Virology 108, 111–122 (1981)PubMedCrossRefGoogle Scholar
  9. 9.
    K.S. Gibb, J.W. Randles, Ann. Appl. Biol. 112, 427–437 (1988)CrossRefGoogle Scholar
  10. 10.
    K.S. Gibb, J.W. Randles, Ann Appl Biol 116, 513–521 (1990)CrossRefGoogle Scholar
  11. 11.
    K.S. Gibb, J.W. Randles, ed. by K.F. Harris. Advances in disease vector research, vol 7 (Springer, New York, 1991), pp. 1–17Google Scholar
  12. 12.
    K.S. Gibb, J.W. Randles, Ann Appl Biol 115, 11–15 (1989)CrossRefGoogle Scholar
  13. 13.
    K. Arthur, S. Dogra, J.W. Randles, Arch. Virol. 155, 1893–1896 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    R.I.B. Francki, C.J. Grivell, K.S. Gibb, Virology 148, 381–384 (1986)PubMedCrossRefGoogle Scholar
  15. 15.
    P.L. Atreya, C.D. Atreya, T.P. Pirone, Proc. Nat. Acad. Sci. USA 88, 7887–7891 (1991)PubMedCrossRefGoogle Scholar
  16. 16.
    C.M.R. Varanda, M.S.M.R. Silva, M.d.R.F Félix, M.I.E. Clara, Eur. J. Plant Pathol. 130, 165–172 (2011)CrossRefGoogle Scholar
  17. 17.
    A.F.S. Mello, A.J. Clark, K.L. Perry, J. Gen. Virol. 91, 545–551 (2010)PubMedCrossRefGoogle Scholar
  18. 18.
    C. Bonneau, C. Brugidou, L. Chen, R.N. Beachy, C. Fauquet, Virology 244, 79–86 (1998)PubMedCrossRefGoogle Scholar
  19. 19.
    M. Meier, H. Paves, A. Olspert, T. Tamm, E. Truve, Virus Genes 32, 321–326 (2006)PubMedCrossRefGoogle Scholar
  20. 20.
    K. Sivakumaran, B.C. Fowler, D.L. Hacker, Virology 252, 376–386 (1998)PubMedCrossRefGoogle Scholar
  21. 21.
    A.J. Drummond, B. Ashton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thiere, A. Wilson, Geneious v5.4 (2011), http://www.geneious.com/
  22. 22.
    K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    W.-H. Li, J. Mol. Evol. 36, 96–99 (1993)PubMedCrossRefGoogle Scholar
  24. 24.
    P. Pamilo, N.O. Bianchi, Mol. Biol. Evol. 10, 271–281 (1993)PubMedGoogle Scholar
  25. 25.
    S.F. Elena, S. Bedhomme, P. Carrasco, J.M. Cuevas, F. de la Iglesia, G. Lafforgue, J. Lalić, À. Pròsper, N. Tromas, M.P. Zwart, Mol. Plant Microbe Interact. 24, 287–293 (2011)PubMedCrossRefGoogle Scholar
  26. 26.
    D. Fargette, A. Pinel, M. Rakotomalala, E. Sangu, O. Traore, D. Sereme, F. Sorho, S. Issaka, E. Hebrard, Y. Sere, Z. Kanyeka, G. Konate, J. Virol. 82, 3584–3589 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    A.J. Gibbs, D. Fargette, F. Garcia-Arenal, M.J. Gibbs, J. Gen. Virol. 91, 13–22 (2010)PubMedCrossRefGoogle Scholar
  28. 28.
    R.P.P. Almeida, G.M. Bennett, M.D. Anhalt, C.-W. Tsai, P. O’Grady, Mol. Ecol. 18, 136–146 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    R. French, D.C. Stenger, Virology 343, 179–189 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    W. Schneider, M. Roossinck, J. Virol. 75, 6566–6571 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    K. Ohshima, S. Akaishi, H. Kajiyama, R. Koga, A.J. Gibbs, J. Gen. Virol. 91, 788–801 (2010)PubMedCrossRefGoogle Scholar
  32. 32.
    D. Fargette, A. Pinel, Z. Abubakar, O. Traore, C. Brugidou, S. Fatogoma, E. Hebrard, M. Choisy, Y. Sere, C.M. Fauquet, G. Konate, J. Virol. 78, 3252–3261 (2004)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia
  2. 2.The New Zealand Institute for Plant & Food Research LtdAucklandNew Zealand
  3. 3.Australian Centre for Plant Functional Genomics (ACPFG), School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations