Virus Genes

, Volume 45, Issue 3, pp 499–507 | Cite as

Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) samples from field cases in Fujian, China

  • Xi Chen
  • Jinxian Yang
  • Fusong Yu
  • Junqing Ge
  • Tianlong Lin
  • Tieying Song
Article

Abstract

The outbreak of porcine epidemic diarrhea virus (PEDV) has been a big problem of swine industry in China in recent years. In this study, we investigated molecular diversity, phylogenetic relationships, and protein characterization of Fujian field samples with other PEDV reference strains. Sequence analysis of the S1 and sM genes showed that each sample had unique characteristics, and the sample P55 may be differentiated from the others by the unique deletions and insertions of sM gene. Phylogenetic analysis based on S1 or sM gene, which have high levels of variations, indicated that each sample was related to the specific reference strain, and this finding was consistent with the protein characterization prediction analysis. The study is useful to better understand the prevalence of PEDV and its prevention and control in Fujian.

Keywords

Porcine epidemic diarrhea virus PEDV Molecular characterization Phylogenetic analysis Protein characterization 

References

  1. 1.
    P. Debouck, M. Pensaert, Experimental infection of pigs with a new porcine enteric coronavirus, CV777. Am. J. Vet. Res. 41, 219–223 (1980)PubMedGoogle Scholar
  2. 2.
    M.B. Pensaert, S.G. Yeo, Porcine epidemic diarrhea, in Diseases of Swine, 9th edn., ed. by B.E. Straw, J.J. Zimmerman, S. D’Allaire, D.J. Taylor (Wiley-Blackwell, Ames, 2006), pp. 367–372Google Scholar
  3. 3.
    A. Pijpers, A.P. Van Nieuwstadt, C. Terpstra, J.H. Verheijden, Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs. Vet. Rec. 132, 129–131 (1993)PubMedCrossRefGoogle Scholar
  4. 4.
    J. Oldham, Letter to the Editor. Pig Farming (Suppl), 10, 72–73 (1972)Google Scholar
  5. 5.
    M.B. Pensaert, P. Debouck, D.J. Reynolds, An immunoelectron microscopic and immunofluorescent study on the antigenic relationship between the coronavirus-like agent, CV777, and several coronaviruses. Arch. Virol. 68, 45–52 (1981)PubMedCrossRefGoogle Scholar
  6. 6.
    S. Puranaveja, P. Poolperm, P. Lertwatcharasarakul, S. Kesdaengsakonwut, A. Boonsoongnern, K. Urairong, P. Kitikoon, P. Choojai, R. Kedkovid, K. Teankum, R. Thanawongnuwech, Chinese-like strain of porcine epidemic diarrhea virus. Thailand Emerg. Infect. Dis. 15, 1112–1115 (2009)Google Scholar
  7. 7.
    K. Takahashi, K. Okada, K. Ohshima, An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. Jpn. J. Vet. Sci. 45, 829–832 (1983)CrossRefGoogle Scholar
  8. 8.
    J.F. Chen, C.B. Wang, H.Y. Shi, H.J. Qiu, S.W. Liu, X.J. Chen, Z.B. Zhang, F. Li, Molecular epidemiology of porcine epidemic diarrhea virus in China. Arch. Virol. 155, 1471–1476 (2010)PubMedCrossRefGoogle Scholar
  9. 9.
    M.B. Pensaert, P. de Bouck, A new coronavirus-like particle associated with diarrhea in swine. Arch. Virol. 58, 243–247 (1978)PubMedCrossRefGoogle Scholar
  10. 10.
    M. Hofmann, R. Wyler, Propagation of the virus of porcine epidemic diarrhea in cell culture. J. Clin. Microbiol. 26, 2235–2239 (1988)PubMedGoogle Scholar
  11. 11.
    A.A.F. De Vries, M.C. Horzinek, P.J.M. Rottier, R.J. de Groot, The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Semin. Virol. 8, 33–47 (1997)CrossRefGoogle Scholar
  12. 12.
    B.J. Bosch, R. Van Der Zee, C.A. De Haan, P.J. Rottier, The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    S.H. Chang, J.L. Bae, T.J. Kang, J. Kim, G.H. Chung, C.W. Lim, H. Laude, M.S. Yang, Y.S. Jang, Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol. Cells 14, 295–299 (2002)PubMedGoogle Scholar
  14. 14.
    M. Godet, J. Grosclaude, B. Delmas, H. Laude, Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J. Virol. 68, 8008–8016 (1994)PubMedGoogle Scholar
  15. 15.
    S.J. Park, H.J. Moon, J.S. Yang, C.S. Lee, D.S. Song, B.K. Kang, B.K. Park, Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea. Virus Genes 35, 321–332 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    W. Spaan, D. Cavanagh, M.C. Horzinek, Coronaviruses: structure and genome expression. J. Gen. Virol. 69, 2939–2952 (1988)PubMedCrossRefGoogle Scholar
  17. 17.
    C.A. De Haan, P.S. Masters, X. Shen, S. Weiss, P.J. Rottier, The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296, 177–189 (2002)PubMedCrossRefGoogle Scholar
  18. 18.
    R.D. Woods, Efficacy of a transmissible gastroenteritis coronavirus with an altered ORF-3 gene. Can. J. Vet. Res. 65, 28–32 (2001)PubMedGoogle Scholar
  19. 19.
    S.J. Park, H.J. Moon, Y. Luo, H.K. Kim, E.M. Kim, J.S. Yang, D.S. Song, B.K. Kang, C.S. Lee, B.K. Park, Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes 36, 95–104 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    B.X. Cai, Porcine epidemic diarrhea. China Anim. Husb. Yeterinary Med. 2, 57–59 (1982)Google Scholar
  21. 21.
    J.F. Chen, D.B. Sun, C.B. Wang, H.Y. Shi, X.C. Cui, S.W. Liu, H.J. Qiu, L. Feng, Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China. Virus Genes 36, 355–364 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)PubMedCrossRefGoogle Scholar
  23. 23.
    D.K. Lee, C.K. Park, S.H. Kim, C.H. Lee, Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses. Virus Res. 149, 175–182 (2010)PubMedCrossRefGoogle Scholar
  24. 24.
    D.S. Song, J.S. Yang, J.S. Oh, J.H. Han, B.K. Park, Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine 21, 1833–1842 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    S.J. Park, H.K. Kim, D.S. Song, D.J. An, B.K. Park, Complete genome sequences of a Korean virulent porcine epidemic diarrhea virus and its attenuated counterpart. J. Virol. 86(10), 5964 (2012)PubMedCrossRefGoogle Scholar
  26. 26.
    Z. Penzes, J.M. Gonzalez, E. Calvo, A. Izeta, C. Smerdou, A. Méndez, C.M. Sanchez, I. Sola, F. Almazan, L. Enjuanes, Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes 23(1), 105–118 (2001)PubMedCrossRefGoogle Scholar
  27. 27.
    S.J. Park, H.K. Kim, D.S. Song, H.J. Moon, B.K. Park, Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Arch. Virol. 156(4), 577–585 (2011)PubMedCrossRefGoogle Scholar
  28. 28.
    S.J. Park, D.S. Song, G.W. Ha, B.K. Park, Cloning and further sequence analysis of the spike gene of attenuated porcine epidemic diarrhea virus DR13. Virus Genes 35, 55–64 (2007)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xi Chen
    • 1
  • Jinxian Yang
    • 1
  • Fusong Yu
    • 1
  • Junqing Ge
    • 1
  • Tianlong Lin
    • 1
  • Tieying Song
    • 1
  1. 1.Biotechnology InstituteFujian Academy of Agricultural SciencesFuzhouChina

Personalised recommendations