Virus Genes

, Volume 45, Issue 2, pp 304–310 | Cite as

Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico

  • Angel E. Absalón
  • Andrea Mariano-Matías
  • Alejandra Vásquez-Márquez
  • Andrés Morales-Garzón
  • Diana V. Cortés-Espinosa
  • Roberto Ortega-García
  • Eduardo Lucio-Decanini
Article

Abstract

In Mexico, the number of cases of the highly virulent Newcastle disease virus is increasing. In 2005, an outbreak of Newcastle disease occurred on an egg laying hen farm in the state of Puebla despite vaccination with the LaSota strain. Farmers experienced a major drop in egg production as a consequence of a field challenge virus. In this study, we characterize the virus, APMV1/chicken/Mexico/P05/2005, responsible for the outbreak. The virus is categorized as a velogenic virus with an intracranial pathogenicity index of 1.99 and a chicken embryo mean death time of 36 h. The complete genome length of the virus was sequenced as consisting of 15,192 bp. In addition, phylogenetic analysis classified the virus as a member of the class II, genotype V. The highly pathogenic nature of the virus has been linked to the amino acid sequence at the fusion protein cleavage site, which contains multiple basic amino acids (RRQKR↓F).

Keywords

Avian paramyxovirus Genetic analysis Newcastle disease virus Mexico Velogenic 

Notes

Acknowledgments

We would like to thank Dr. Claudio L. Afonso for reviewing the manuscript. This study was supported by CONACYT (Grant Salud-2009-C02-126990) and by the Instituto Politecnico Nacional (Grand SIP-20121834).

Supplementary material

11262_2012_782_MOESM1_ESM.eps (2.8 mb)
Phylogenetic analysis of 77 nucleotide sequences of the variable region of gene F (nucleotides 47-420) of class I and class II (Genotypes I – IX) of representative genomes. The evolutionary history was inferred using the Maximum Likelihood method based on the Kimura 2-parameter model. When the number of common sites was < 100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise the BIONJ method with MCL distance matrix was used. The phylogenetic tree is drawn to scale with the highest log-likelihood (-4220.8699), with branch lengths measured as the number of substitutions per site (only shows the highest at 0.005). A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4757)). Evolutionary analyses were conducted in MEGA5 [13]. (EPS 2849 kb)

References

  1. 1.
    M.A. Mayo, Arch. Virol. 147, 1655 (2002)PubMedCrossRefGoogle Scholar
  2. 2.
    O.S. de Leeuw, B.P.H. Peeters, J. Gen. Virol. 80, 131 (1999)PubMedGoogle Scholar
  3. 3.
    D.J. Alexander, in Disease of Poultry, ed. by J.M. Saif, H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald, D.E. Swayne, I.A. Ames (Iowa State University Press, Ames, 2003), p. 541Google Scholar
  4. 4.
    B.P.H. Peeters, O.S. de Leeuw, G. Koch, A.L.J. Gielkens, J. Virol. 73, 5001 (1999)PubMedGoogle Scholar
  5. 5.
    E.W. Aldous, J.K. Mynn, J. Banks, D.J. Alexander, Avian Pathol. 32, 239 (2003)PubMedCrossRefGoogle Scholar
  6. 6.
    D. Ujvári, E. Wehmann, J. Herezeg, B. Lomniczi, J. Virol. Methods 131, 115 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    A. Czeglédi, D. Ujvári, E. Somogyi, E. Wehmann, O. Werner, B. Lomniczi, Virus Res. 120, 36 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    P.J. Miller, D.J. King, C.L. Afonso, D.L. Suarez, Vaccine 25, 7238 (2007)PubMedCrossRefGoogle Scholar
  9. 9.
    F. Perozo, R. Merino, C.L. Afonso, P. Villegaz, N. Calderon, Avian Dis. 52, 472 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    R. Merino, H. Villegas, J. Quintana, N. Calderon, Vet. Res. Commun. 33, 1023 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    D.J. Alexander, in A Laboratory Manual for the Isolation and Identification of Avian Pathogens, ed. by H.G. Purchase, L.H. Arp, C.H. Domermuth, J.E. Pearson (American Association of Avian Pathologists, Kennett Square, 1989), p. 114Google Scholar
  12. 12.
    D.J. Alexander, R.J. Manvell, P.A. Kemp, G. Parsons, M.S. Collins, S. Brockman, P.H. Russell, S.A. Lister, Avian Pathol. 1, 553 (1987)CrossRefGoogle Scholar
  13. 13.
    K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731 (2011)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Yan, S.K. Samal, J. Virol. 82, 1323 (2008)PubMedCrossRefGoogle Scholar
  15. 15.
    J.C. Rassa, G.M. Wilson, G.A. Brewer, G.D. Parks, Virology 274, 438 (2000)PubMedCrossRefGoogle Scholar
  16. 16.
    J.W. Walker, B.R. Heron, M.A. Mixon, Avian Dis. 17, 486 (1973)PubMedCrossRefGoogle Scholar
  17. 17.
    P.J. Miller, E.L. Decanini, C.L. Afonso, Infect. Genet. Evol. 10, 26 (2010)PubMedCrossRefGoogle Scholar
  18. 18.
    A. Panda, Z. Huang, S. Elankumaran, D. Rockemann, S.K. Samal, Microb. Pathog. 36, 1 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    A. Panda, S. Elankumaran, S. Krishnamurthy, Z. Huang, S.K. Samal, J. Virol. 78, 4965 (2004)PubMedCrossRefGoogle Scholar
  20. 20.
    J.C. Pedersen, D.A. Senne, P.R. Woolcock, H. Kinde, D. King, M.G. Wise, B. Panigrahy, B.S. Seal, J. Clin. Microbiol. 42, 2329 (2004)PubMedCrossRefGoogle Scholar
  21. 21.
    J.C.F.M. Dortmans, P.J.M. Rottier, G. Koch, B.P.H. Peeters, J. Virol. 84, 10113 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    J.C.F.M. Dortmans, P.J.M. Rottier, G. Koch, B.P.H. Peeters, J. Gen. Virol. 92, 336 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    P.J. Miller, L.M. Kim, H.S. Ip, C.L. Afonso, Virology 391, 64 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    N. P. Acha, B. Szyfres, Enfermedad de Newcastle. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales, vol. 2, 3ª edn. (Organización Panamericana de la Salud, Washington, DC, 2003), pp. 168–175Google Scholar
  25. 25.
    J. Estudillo, A Newcastle disease outbreak in captive exotic birds, in Proceedings of the 21st West Poultry Disease Conference, University of California, 1972, pp. 70–73Google Scholar
  26. 26.
    B. Nayak, F.M. Dias, S. Kumar, A. Paldurai, P.L. Collins, S.K. Samal, Vaccine 30, 2220 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Angel E. Absalón
    • 1
  • Andrea Mariano-Matías
    • 1
  • Alejandra Vásquez-Márquez
    • 1
  • Andrés Morales-Garzón
    • 2
  • Diana V. Cortés-Espinosa
    • 1
  • Roberto Ortega-García
    • 2
  • Eduardo Lucio-Decanini
    • 2
  1. 1.Centro de Investigación en Biotecnología Aplicada, IPNTepetitlaMexico
  2. 2.Investigación AplicadaTehuacánMexico

Personalised recommendations