Advertisement

Virus Genes

, Volume 45, Issue 1, pp 48–55 | Cite as

Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe

  • Mathias Schlegel
  • Lukáš Radosa
  • Ulrike M. Rosenfeld
  • Sabrina Schmidt
  • Cornelia Triebenbacher
  • Paul-Walter Löhr
  • Dieter Fuchs
  • Marta Heroldová
  • Eva Jánová
  • Michal Stanko
  • Ladislav Mošanský
  • Jana Fričová
  • Milan Pejčoch
  • Josef Suchomel
  • Luboš Purchart
  • Martin H. Groschup
  • Detlev H. Krüger
  • Boris Klempa
  • Rainer G. UlrichEmail author
Article

Abstract

For a long time hantaviruses were believed to be exclusively rodent-borne pathogens. Recent findings of numerous shrew- and mole-borne hantaviruses raise important questions on their phylogenetic origin. The objective of our study was to prove the presence and distribution of shrew-associated Seewis virus (SWSV) in different Sorex species in Central Europe. Therefore, a total of 353 Sorex araneus, 59 S. minutus, 27 S. coronatus, and one S. alpinus were collected in Germany, the Czech Republic, and Slovakia. Screening by hantavirus-specific L-segment RT-PCR revealed specific amplification products in tissues of 49 out of 353 S. araneus and four out of 59 S. minutus. S-segment sequences were obtained for 45 of the L-segment positive S. araneus and all four L-segment positive S. minutus. Phylogenetic investigation of these sequences from Germany, the Czech Republic, and Slovakia demonstrated their similarity to SWSV sequences from Hungary, Finland, Austria, and other sites in Germany. The low intra-cluster sequence variability and the high inter-cluster divergence suggest a long-term SWSV evolution in isolated Sorex populations. In 28 of the 49 SWSV S-segment sequences, an additional putative open reading frame (ORF) on the opposite strand to the nucleocapsid protein-encoding ORF was identified. This is the first comprehensive sequence analysis of SWSV strains from Germany, the Czech Republic, and Slovakia, indicating its broad geographical distribution and high genetic divergence. Future studies have to prove whether both S. araneus and S. minutus represent SWSV reservoir hosts or spillover infections are responsible for the parallel molecular detection of SWSV in both species.

Keywords

Hantavirus Seewis virus Shrew Sorex araneus Central Europe Spillover 

Notes

Acknowledgments

The authors kindly acknowledge the support of Andreas Gehrke, Anne Balkema-Buschmann, Daniel Balkema, Christian Imholt, Christian Kiffner, Daniel Masur, Daniela Reil, Dietmar Haschenz, Dietrich Heidecke, Dörte Kaufmann, Ferdinand Rühe, Hans-Joachim Pelz, Hermann Ansorge, Hinrich Zoller, Ingolf Stodian, Jana Eccard, Jens Jacob, Jörg Thiel, Jona Freise, Jonas Schmidt-Chanasit, Kati Sevke, Margrit Bemmann, Matthias Tzschoppe, Matthias Wenk, Mechthild Budde, Michael Stubbe, Peter Jork, Peter Liesegang, Ronny Wolf, Sandra Blome, Thilo Liesenjohann, Thomas Büchner, Torsten Heidecke, Wolfgang Wegener for animal trapping, Bärbel Hammerschmidt, Christian Kretzschmar, Christina Maresch, Daniel Windolph, Denny Maaz, Hanan Sheikh Ali, Henrike Gregersen, Josephine Schlosser, Josephine Schröter, Julie Elkins, Konrad Wanka, Lena Buschke, Marc Mertens, Nicole Stieger, Paul Dremsek, Ramona Spließ, Theres Wollny, Ulrike Duve, Ute Wessels for animal necropsy and Franziska Thomas and Nicole Schmidt for technical assistance. This work was supported by the German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) through the Federal Institute for Agriculture and Nutrition (BLE), Grant number 07HS027 (contract no.: 506122), the Robert Koch-Institut with funds of the German Ministry of Public Health (grant no. 1362/1-924, 1362/1-980,1369-382, 1369-435), the Federal Environment Agency (Grant No. 3710 63 401), the Slovak Research and Development Agency (under the contract No. APVV-0267-10). In addition, this study was partially funded by EU Grant FP7-261504 EDENext and is cataloged by the EDENext Steering Committee as EDENext016 (http://www.edenext.eu). The contents of this publication are the sole responsibility of the authors and don’t necessarily reflect the views of the European Commission.

References

  1. 1.
    D.E. Carey, R. Reuben, K.N. Panicker, R.E. Shope, R.M. Myers, Indian J. Med. Res. 59, 1758–1760 (1971)PubMedGoogle Scholar
  2. 2.
    J.W. Song, L.J. Baek, C.S. Schmaljohn, R. Yanagihara, Emerg. Infect. Dis. 13, 980–985 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    B. Klempa, E. Fichet-Calvet, E. Lecompte, B. Auste, V. Aniskin, H. Meisel, P. Barriere, L. Koivogui, J. ter Meulen, D.H. Kruger, Emerg. Infect. Dis. 13, 520–522 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    J.W. Song, H.J. Kang, S.H. Gu, S.S. Moon, S.N. Bennett, K.J. Song, L.J. Baek, H.C. Kim, M.L. O’Guinn, S.T. Chong, T.A. Klein, R. Yanagihara, J. Virol. 83, 6184–6191 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    H.J. Kang, B. Kadjo, S. Dubey, F. Jacquet, R. Yanagihara, Virol. J. 8, 373 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    J.W. Song, H.J. Kang, K.J. Song, T.T. Truong, S.N. Bennett, S. Arai, N.U. Truong, R. Yanagihara, Emerg. Infect. Dis. 13, 1784–1787 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    S. Arai, J.W. Song, L. Sumibcay, S.N. Bennett, V.R. Nerurkar, C. Parmenter, J.A. Cook, T.L. Yates, R. Yanagihara, Emerg. Infect. Dis. 13, 1420–1423 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    S. Arai, S.N. Bennett, L. Sumibcay, J.A. Cook, J.W. Song, A. Hope, C. Parmenter, V.R. Nerurkar, T.L. Yates, R. Yanagihara, Am. J. Trop. Med. Hyg. 78, 348–351 (2008)PubMedGoogle Scholar
  9. 9.
    H.J. Kang, S. Arai, A.G. Hope, J.A. Cook, R. Yanagihara, Vector Borne Zoonotic Dis. 10, 593–597 (2010)PubMedCrossRefGoogle Scholar
  10. 10.
    S. Arai, S.D. Ohdachi, M. Asakawa, H.J. Kang, G. Mocz, J. Arikawa, N. Okabe, R. Yanagihara, Proc. Natl. Acad. Sci. USA 105, 16296–16301 (2008)PubMedCrossRefGoogle Scholar
  11. 11.
    H.J. Kang, S.N. Bennett, L. Dizney, L. Sumibcay, S. Arai, L.A. Ruedas, J.W. Song, R. Yanagihara, Virology 388, 8–14 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    H.J. Kang, S.N. Bennett, L. Sumibcay, S. Arai, A.G. Hope, G. Mocz, J.W. Song, J.A. Cook, R. Yanagihara, PLoS ONE 4, e6149 (2009)PubMedCrossRefGoogle Scholar
  13. 13.
    H.J. Kang, S.N. Bennett, A.G. Hope, J.A. Cook, R. Yanagihara, J. Virol. 85, 7496 (2011)PubMedCrossRefGoogle Scholar
  14. 14.
    S. Weiss, P.T. Witkowski, B. Auste, K. Nowak, N. Weber, J. Fahr, J.V. Mombouli, N.D. Wolfe, J.F. Drexler, C. Drosten, B. Klempa, F.H. Leendertz, D.H. Kruger, Emerg. Infect. Dis. 18, 159–161 (2012)PubMedCrossRefGoogle Scholar
  15. 15.
    L. Sumibcay, B. Kadjo, S.H. Gu, H.J. Kang, B.K. Lim, J.A. Cook, J.W. Song, R. Yanagihara, Virol. J. 9, 34 (2012)PubMedCrossRefGoogle Scholar
  16. 16.
    D.H. Kruger, G. Schonrich, B. Klempa, Hum. Vaccin. 7, 685 (2011)PubMedCrossRefGoogle Scholar
  17. 17.
    J.W. Song, S.H. Gu, S.N. Bennett, S. Arai, M. Puorger, M. Hilbe, R. Yanagihara, Virol. J. 4, 114 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    H.J. Kang, S. Arai, A.G. Hope, J.W. Song, J.A. Cook, R. Yanagihara, Virol. J. 6, 208 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    L.N. Yashina, S.A. Abramov, V.V. Gutorov, T.A. Dupal, A.V. Krivopalov, V.V. Panov, G.A. Danchinova, V.V. Vinogradov, E.M. Luchnikova, J. Hay, H.J. Kang, R. Yanagihara, Vector Borne Zoonotic Dis. 10, 585–591 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    B. Klempa, E. Fichet-Calvet, E. Lecompte, B. Auste, V. Aniskin, H. Meisel, C. Denys, L. Koivogui, J. ter Meulen, D.H. Kruger, Emerg. Infect. Dis. 12, 838–840 (2006)PubMedCrossRefGoogle Scholar
  21. 21.
    M. Schlegel, E. Kindler, S.S. Essbauer, R. Wolf, J. Thiel, M.H. Groschup, G. Heckel, R.M. Oehme, R.G. Ulrich, Vector Borne Zoonotic Dis. (2012)Google Scholar
  22. 22.
    P. Taberlet, L. Fumagalli, A.G. Wust-Saucy, J.F. Cosson, Mol. Ecol. 7, 453–464 (1998)PubMedCrossRefGoogle Scholar
  23. 23.
    G. Yannic, P. Basset, J. Hausser, Mol. Phylogenet. Evol. 47, 237–250 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    M. Schlegel, H.S. Ali, N. Stieger, M.H. Groschup, R. Wolf, R.G. Ulrich, Biochem. Genet. (2011)Google Scholar
  25. 25.
    F. Spitzenberger, H.M. Steiner, Bonn Zool Beitr 18, 258–296 (1967)Google Scholar
  26. 26.
    S. Churchfield, L. Rychlik, J. Zool. 269, 381–390 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Stanko, L. Mošanský, Lynx 30, 101–111 (1999)Google Scholar
  28. 28.
    J. Schmidt-Chanasit, S. Essbauer, R. Petraityte, K. Yoshimatsu, K. Tackmann, F.J. Conraths, K. Sasnauskas, J. Arikawa, A. Thomas, M. Pfeffer, J.J. Scharninghausen, W. Splettstoesser, M. Wenk, G. Heckel, R.G. Ulrich, J. Virol. 84, 459–474 (2010)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Schlegel, B. Klempa, B. Auste, M. Bemmann, J. Schmidt-Chanasit, T. Buchner, M.H. Groschup, M. Meier, A. Balkema-Buschmann, H. Zoller, D.H. Kruger, R.G. Ulrich, Emerg. Infect. Dis. 15, 2017–2020 (2009)PubMedCrossRefGoogle Scholar
  30. 30.
    M. Weidmann, P. Schmidt, M. Vackova, K. Krivanec, P. Munclinger, F.T. Hufert, J. Clin. Microbiol. 43, 808–812 (2005)PubMedCrossRefGoogle Scholar
  31. 31.
    B. Hjelle, T. Yates, Curr. Top. Microbiol. Immunol. 256, 77–90 (2001)PubMedCrossRefGoogle Scholar
  32. 32.
    C. Ramsden, F.L. Melo, L.M. Figueiredo, E.C. Holmes, P.M. Zanotto, Mol. Biol. Evol. 25, 1488–1492 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    A. Plyusnin, S.P. Morzunov, Curr. Top. Microbiol. Immunol. 256, 47–75 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    K.M. Jaaskelainen, P. Kaukinen, E.S. Minskaya, A. Plyusnina, O. Vapalahti, R.M. Elliott, F. Weber, A. Vaheri, A. Plyusnin, J. Med. Virol. 79, 1527–1536 (2007)PubMedCrossRefGoogle Scholar
  35. 35.
    F. Ronquist, J.P. Huelsenbeck, Bioinformatics 19, 1572–1574 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. (2011)Google Scholar
  37. 37.
    D. Posada, Mol. Biol. Evol. 25, 1253–1256 (2008)PubMedCrossRefGoogle Scholar
  38. 38.
    D.P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinformatics 26, 2462–2463 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mathias Schlegel
    • 1
  • Lukáš Radosa
    • 2
    • 11
  • Ulrike M. Rosenfeld
    • 1
  • Sabrina Schmidt
    • 1
  • Cornelia Triebenbacher
    • 3
  • Paul-Walter Löhr
    • 4
  • Dieter Fuchs
    • 5
  • Marta Heroldová
    • 6
  • Eva Jánová
    • 6
  • Michal Stanko
    • 7
    • 8
  • Ladislav Mošanský
    • 8
  • Jana Fričová
    • 8
  • Milan Pejčoch
    • 9
  • Josef Suchomel
    • 10
  • Luboš Purchart
    • 10
  • Martin H. Groschup
    • 1
  • Detlev H. Krüger
    • 2
  • Boris Klempa
    • 2
    • 11
  • Rainer G. Ulrich
    • 1
    Email author
  1. 1.Friedrich-Loeffler-InstitutFederal Research Institute for Animal Health, OIE Collaborating Centre for Zoonoses in Europe, Institute for Novel and Emerging Infectious DiseasesGreifswald-Insel RiemsGermany
  2. 2.Institute of Medical Virology, Helmut-Ruska-HausCharité University HospitalBerlinGermany
  3. 3.Bayerische Landesanstalt für Wald und ForstwirtschaftFreisingGermany
  4. 4.Mücke-MerlauVogelsbergkreisGermany
  5. 5.Landesbetrieb Forst Brandenburg, Oberförsterei NeustadtRevier DreetzGermany
  6. 6.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  7. 7.Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  8. 8.Institute of ParasitologySlovak Academy of SciencesKošiceSlovakia
  9. 9.National Institute of Public Health, Prague and National Reference Laboratory for Monitoring of Environmental Biotic FactorsBrnoCzech Republic
  10. 10.Institute of Forest EcologyMendel UniversityBrnoCzech Republic
  11. 11.Institute of VirologySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations