Virus Genes

, 43:177 | Cite as

Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein

  • Marc Mertens
  • Eveline Kindler
  • Petra Emmerich
  • Jutta Esser
  • Christiane Wagner-Wiening
  • Roman Wölfel
  • Rasa Petraityte-Burneikiene
  • Jonas Schmidt-Chanasit
  • Aurelija Zvirbliene
  • Martin H. Groschup
  • Gerhard Dobler
  • Martin Pfeffer
  • Gerald Heckel
  • Rainer G. Ulrich
  • Sandra S. Essbauer
Article

Abstract

Puumala virus (PUUV) is the predominant hantavirus species in Germany causing large numbers of mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS). During an outbreak in South-East Germany in 2004 a novel PUUV subtype designated Bavaria was identified as the causative agent of HFRS in humans [1]. Here we present a molecular characterization of this PUUV strain by investigating novel partial and almost entire nucleocapsid (N) protein-encoding small (S-) segment sequences and partial medium (M-) segment sequences from bank voles (Myodes glareolus) trapped in Lower Bavaria during 2004 and 2005. Phylogenetic analyses confirmed their classification as subtype Bavaria, which is further subdivided into four geographical clusters. The entire N protein, harbouring an amino-terminal hexahistidine tag, of the Bavarian strain was produced in yeast Saccharomyces cerevisiae and showed a slightly different reactivity with N-specific monoclonal antibodies, compared to the yeast-expressed N protein of the PUUV strain Vranica/Hällnäs. Endpoint titration of human sera from different parts of Germany and from Finland revealed only very slight differences in the diagnostic value of the different recombinant proteins. Based on the novel N antigen indirect and monoclonal antibody capture IgG-ELISAs were established. By using serum panels from Germany and Finland their validation demonstrated a high sensitivity and specificity. In summary, our investigations demonstrated the Bavarian PUUV strain to be genetically divergent from other PUUV strains and the potential of its N protein for diagnostic applications.

Keywords

Hantavirus Puumala virus Phylogeny Recombinant nucleocapsid protein ELISA Diagnostics 

Notes

Acknowledgements

We would like to thank Ausra Razanskiene and Kestutis Sasnauskas (Vilnius) and Bernd Köllner (Riems) for continous support and helpful discussions, Åke Lundkvist (Stockholm), Kumiko Yoshimatsu and Jiro Arikawa (Sapporo) for provision of N protein-specific mAbs and Olli Vapalahti (Helsinki), Regina Allwinn and Holger F. Rabenau (Frankfurt) for provision of human serum panels. We kindly acknowledge Harald Weber, Aileene Lorber, Rahime Terzioglu, Elmar Schröpfer, Ralf Hagen, Mirko Köhler, Anne Grumbach, Peter Klein and Kerstin Weiss for their support during rodent trapping, rodent necropsy and collection of human sera in South-East Germany. The excellent technical lab assistance of Jana Blumhardt, Ina Römer, Dörte Kaufmann, Sabine Fink and Astrid Thomas is gratefully acknowledged. The work was supported by Research-Project M/SAB1/5/A017 for the Bundeswehr Medical Service to RGU.

Supplementary material

11262_2011_620_MOESM1_ESM.pptx (64 kb)
Supplementary Figure. Bayesian reconstruction of phylogenetic relationships based on 968 bp mtDNA (cyt b) from 120 Myodes glareolus with M. rufocanus as outgroup. Only support values for main nodes that connect major evolutionary lineages are displayed. Posterior probabilities are indicated above the major branches and percentage of bootstrap support for neighbour-joining (NJ) algorithms below the branches. * indicates a different topology based on NJ algorithms, ns refers to posterior probabilities <0.50 and percentages of bootstrap support <50%. Arrows depict cyt b sequences from bank voles from Bavaria where PUUV sequences were detected in (PPTX 64 kb)

References

  1. 1.
    S. Essbauer, J. Schmidt, F.J. Conraths, R. Friedrich, J. Koch, W. Hautmann, M. Pfeffer, R. Wölfel, J. Finke, G. Dobler, R. Ulrich, A new Puumala hantavirus subtype in rodents associated with an outbreak of Nephropathia epidemica in South-East Germany in 2004. Epidemiol. Infect. 134, 1333–1344 (2006)PubMedCrossRefGoogle Scholar
  2. 2.
    S.T. Nichol, B.J. Beaty, R.M. Elliott, R. Goldbach, A. Plyusnin, C.S. Schmaljohn, R.B. Tesh, Family Bunyaviridae, in Virus Taxonomy, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball. 8th Report of the International Committee on Taxonomy of Viruses (Elsevier Academic Press, San Diego, CA, 2005), pp. 695–716Google Scholar
  3. 3.
    C.S. Schmaljohn, S.T. Nichol, Bunyaviridae, in Fields Virology, vol. 2, 5th edn., ed. by D.M. Knipe, P.M. Howley (Lippencott, Williams & Wilkins, Philadelphia, PA, 2007), pp. 1741–1789Google Scholar
  4. 4.
    A. Plyusnin, S.P. Morzunov, Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr. Top. Microbiol. Immunol. 256, 47–75 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    R. Ulrich, B. Hjelle, C. Pitra, D.H. Krüger, Emerging viruses: the case “Hantavirus”. Intervirology 45, 318–327 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    K.M. Jääskeläinen, A. Plyusnina, Å. Lundkvist, A. Vaheri, A. Plyusnin, Tula hantavirus isolate with the full-length ORF for nonstructural protein NSs survives for more consequent passages in interferon-competent cells than the isolate having truncated NSs ORF. Virol. J. 5, 3 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    G. Schönrich, A. Rang, N. Lütteke, M.J. Raftery, N. Charbonnel, R.G. Ulrich, Hantavirus-induced immunity in rodent reservoirs and humans. Immunol. Rev. 225, 163–189 (2008)PubMedCrossRefGoogle Scholar
  8. 8.
    R.M. Wells, S. Sosa Estani, Z.E. Yadon, D. Enria, P. Padula, N. Pini, J.N. Mills, C.J. Peters, E.L. Segura, An unusual hantavirus outbreak in southern Argentina: person-to-person transmission? Hantavirus Pulmonary Syndrome Study Group for Patagonia. Emerg. Infect. Dis. 3, 171–174 (1997)PubMedCrossRefGoogle Scholar
  9. 9.
    P.J. Padula, A. Edelstein, S.D. Miguel, N.M. Lopez, C.M. Rossi, R.D. Rabinovich, Hantavirus pulmonary syndrome outbreak in Argentina: molecular evidence for person-to-person transmission of Andes virus. Virology 241, 323–330 (1998)PubMedCrossRefGoogle Scholar
  10. 10.
    D.E. Carey, R. Reuben, K.N. Panicker, R.E. Shope, R.M. Myers, Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India. Indian J. Med. Res. 59, 1758–1760 (1971)PubMedGoogle Scholar
  11. 11.
    J.W. Song, S.H. Gu, S.N. Bennett, S. Arai, M. Puorger, M. Hilbe, R. Yanagihara, Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virol. J. 4, 114 (2007)PubMedCrossRefGoogle Scholar
  12. 12.
    J.W. Song, H.J. Kang, K.J. Song, T.T. Truong, S.N. Bennett, S. Arai, N.U. Truong, R. Yanagihara, Newfound hantavirus in Chinese mole shrew, Vietnam. Emerg. Infect. Dis. 13, 1784–1787 (2007)PubMedGoogle Scholar
  13. 13.
    B. Klempa, E. Fichet-Calvet, E. Lecompte, B. Auste, V. Aniskin, H. Meisel, P. Barriere, L. Koivogui, J. ter Meulen, D.H. Krüger, Novel hantavirus sequences in shrew, Guinea. Emerg. Infect. Dis. 13, 520–522 (2007)PubMedCrossRefGoogle Scholar
  14. 14.
    S. Arai, J.W. Song, L. Sumibcay, S.N. Bennett, V.R. Nerurkar, C. Parmenter, J.A. Cook, T.L. Yates, R. Yanagihara, Hantavirus in northern short-tailed shrew, United States. Emerg. Infect. Dis. 13, 1420–1423 (2007)PubMedGoogle Scholar
  15. 15.
    H.J. Kang, S.N. Bennett, L. Sumibcay, S. Arai, A.G. Hope, G. Mocz, J.W. Song, J.A. Cook, R. Yanagihara, Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One 4, 7 (2009)Google Scholar
  16. 16.
    H. Kariwa, S. Yoshizumi, J. Arikawa, K. Yoshimatsu, K. Takahashi, I. Takashima, N. Hashimoto, Evidence for the existence of Puumula-related virus among Clethrionomys rufocanus in Hokkaido. Japan. Am. J. Trop. Med. Hyg. 53, 222–227 (1995)Google Scholar
  17. 17.
    N.H. Daud, H. Kariwa, Y. Tanikawa, I. Nakamura, T. Seto, D. Miyashita, K. Yoshii, M. Nakauchi, K. Yoshimatsu, J. Arikawa, I. Takashima, Mode of infection of Hokkaido virus (Genus Hantavirus) among grey red-backed voles, Myodes rufocanus, in Hokkaido, Japan. Microbiol. Immunol. 51, 1081–1090 (2007)PubMedGoogle Scholar
  18. 18.
    A. Plyusnina, J. Laakkonen, J. Niemimaa, K. Nemirov, G. Muruyeva, B. Pohodiev, Å. Lundkvist, A. Vaheri, H. Henttonen, O. Vapalahti, A. Plyusnin, Genetic analysis of hantaviruses carried by Myodes and Microtus rodents in Buryatia. Virol. J. 5, 4 (2008)PubMedCrossRefGoogle Scholar
  19. 19.
    J. Mustonen, O. Vapalahti, H. Henttonen, A. Pasternack, A. Vaheri, Epidemiology of hantavirus infections in Europe. Nephrol. Dial. Transplant. 13, 2729–2731 (1998)PubMedCrossRefGoogle Scholar
  20. 20.
    H. Kallio-Kokko, N. Uzcategui, O. Vapalahti, O. Vaheri, Viral zoonoses in Europe. FEMS Microbiol. Rev. 29, 1051–1077 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    S. Sandmann, H. Meisel, A. Razanskiene, A. Wolbert, B. Pohl, D.H. Krüger, K. Sasnauskas, R. Ulrich, Detection of human hantavirus infections in Lithuania. Infection 33(2), 66–72 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    L. Fontana-Binard, D. Schultze, B.S. Rojanavisut, D.H. Krüger, G. Dollenmaier, G. Zanetti, P. Meylan, First case of nephropathia epidemica acquired in Switzerland. Rev. Med. Suisse. 4(163), 1572–1575 (2008)PubMedGoogle Scholar
  23. 23.
    S. Grygorczuk, S. Pancewicz, J. Zajkowska, M. Kondrusik, R. Swierzbińska, A. Moniuszko, W. Pawlak-Zalewska, Detection of anti-hantavirus antibodies in forest workers in the north-east of Poland. Przegl. Epidemiol. 62, 531–537 (2008)PubMedGoogle Scholar
  24. 24.
    L. Zöller, M. Faulde, H. Meisel, B. Ruh, P. Kimmig, U. Schelling, M. Zeier, P. Kulzer, C. Becker, M. Roggendorf, E.K.F. Bautz, D.H. Krüger, G. Darai, Seroprevalence of hantavirus antibodies in Germany as determined by a new recombinant enzyme immunoassay. Eur. J. Clin. Microbiol. Infect. Dis. 14, 305–313 (1995)PubMedCrossRefGoogle Scholar
  25. 25.
    R. Ulrich, H. Meisel, M. Schütt, J. Schmidt, A. Kunz, B. Klempa, M. Niedrig, P. Kimmig, G. Pauli, D.H. Krüger, J. Koch, Verbreitung von Hantavirusinfektionen in Deutschland. Bundesgesundheitsbl. Gesundheitsforsch. Gesundheitsschutz 47, 661–670 (2004)Google Scholar
  26. 26.
    S.S. Essbauer, J. Schmidt-Chanasit, E.L. Madeja, W. Wegener, R. Friedrich, R. Petraityte, K. Sasnauskas, J. Jacob, J. Koch, G. Dobler, F.J. Conraths, M. Pfeffer, C. Pitra, R.G. Ulrich, Nephropathia epidemica outbreak in a metropolitan area, Germany. Emerg. Infect. Dis. 13, 1271–1273 (2007)PubMedGoogle Scholar
  27. 27.
    J. Koch, S.O. Brockmann, C. Winter, P. Kimmig, K. Stark, Significant increase of hantavirus infections in Germany since the beginning of 2007. Euro Surveill. 12, 5 (2007)Google Scholar
  28. 28.
    J. Hofmann, H. Meisel, B. Klempa, S.M. Vesenbeckh, R. Beck, D. Michel, J. Schmidt-Chanasit, R.G. Ulrich, S. Grund, G. Enders, D.H. Krüger, Molecular epidemiology of a large hantavirus outbreak in Germany, 2007. Emerg. Infect. Dis. 14, 850–852 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    S. Schilling, P. Emmerich, B. Klempa, B. Auste, E. Schnaith, H. Schmitz, D.H. Krüger, S. Günther, H. Meisel, Hantavirus outbreak in Germany: limitations of routine serological diagnostics and clustering of virus sequences of human and rodent origin. J. Clin. Microbiol. 45, 3008–3014 (2007)PubMedCrossRefGoogle Scholar
  30. 30.
    H.W. Lee, C. Calisher, C.S. Schmaljohn, Manual of Hemorrhagic Fever with Renal Syndrome and Hantavirus Pulmonary Syndrome (WHO Collaborating Center for Virus Reference and Research, Seoul, 1999)Google Scholar
  31. 31.
    D.H. Krüger, R. Ulrich, Å. Lundkvist, Hantavirus infections and their prevention. Microbes. Infect. 3, 1129–1144 (2001)PubMedCrossRefGoogle Scholar
  32. 32.
    M. Mertens, R. Wölfel, K. Ullrich, K. Yoshimatsu, J. Blumhardt, I. Römer, J. Esser, J. Schmidt-Chanasit, M.H. Groschup, G. Dobler, S.S. Essbauer, R.G. Ulrich, Seroepidemiological study in a Puumala virus outbreak area in South-East Germany. Med. Mircobiol. Immunol. 198, 83–91 (2009)CrossRefGoogle Scholar
  33. 33.
    H. Feldmann, A. Sanchez, S. Morzunov, C.F. Spiropoulou, P.E. Rollin, T.G. Ksiazek, C.J. Peters, S.T. Nichol, Utilization of autopsy RNA for the synthesis of the nucleocapsid antigen of a newly recognized virus associated with hantavirus pulmonary syndrome. Virus Res. 30, 351–367 (1993)PubMedCrossRefGoogle Scholar
  34. 34.
    F. Elgh, M. Linderholm, G. Wadell, A. Tarnvik, P. Juto, Development of humoral cross-reactivity to the nucleocapsid protein of heterologous hantaviruses in nephropathia epidemica. FEMS Immunol. Med. Microbiol. 22, 309–315 (1998)PubMedCrossRefGoogle Scholar
  35. 35.
    K.B. Sjolander, Å. Lundkvist, Dobrava virus infection: serological diagnosis and cross-reactions to other hantaviruses. J. Virol. Methods 80(2), 137–143 (1999)PubMedCrossRefGoogle Scholar
  36. 36.
    J. Schmidt, H. Meisel, B. Hjelle, D.H. Krüger, R. Ulrich, Development and evaluation of serological assays for detection of human hantavirus infections caused by Sin Nombre virus. J. Clin. Virol. 33, 247–253 (2005)PubMedCrossRefGoogle Scholar
  37. 37.
    J. Schmidt, H. Meisel, S.G. Capria, R. Petraityte, Å. Lundkvist, B. Hjelle, P.A. Vial, P. Padula, D.H. Krüger, R. Ulrich, Serological assays for the detection of human Andes hantavirus infections based on its yeast-expressed nucleocapsid protein. Intervirology 49, 173–184 (2006)PubMedCrossRefGoogle Scholar
  38. 38.
    H. Meisel, A. Wolbert, A. Razanskiene, A. Marg, A. Kazaks, K. Sasnauskas, G. Pauli, R. Ulrich, D.H. Krüger, Development of novel immunoglobulin G (IgG), IgA and IgM enzyme immunoassays based on recombinant Puumala and Dobrava hantavirus nucleocapsid proteins. Clin. Vaccine Immunol. 13, 1349–1357 (2006)PubMedCrossRefGoogle Scholar
  39. 39.
    A. Zvirbliene, L. Samonskyte, A. Gedvilaite, T. Voronkova, R. Ulrich, K. Sasnauskas, Generation of monoclonal antibodies of desired specificity using chimeric polyomavirus-derived virus-like particles. J. Immunol. Methods 311, 57–70 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    Å. Lundkvist, A. Fatouros, B. Niklasson, Antigenic variation of European haemorrhagic fever with renal syndrome virus strains characterized using bank vole monoclonal antibodies. J. Gen. Virol. 72, 2097–2103 (1991)PubMedCrossRefGoogle Scholar
  41. 41.
    Å. Lundkvist, B. Niklasson, Bank vole monoclonal antibodies against Puumala virus envelope glycoproteins: identification of epitopes involved in neutralization. Arch. Virol. 126, 93–105 (1992)PubMedCrossRefGoogle Scholar
  42. 42.
    L.G. Zöller, S. Yang, P. Gött, E.K. Bautz, G. Darai, A novel μ-capture enzyme-linked immunosorbent assay based on recombinant proteins for sensitive and specific diagnosis of hemorrhagic fever with renal syndrome. J. Clin. Microbiol. 31, 1194–1199 (1993)PubMedGoogle Scholar
  43. 43.
    K. Yoshimatsu, Y.C. Yoo, R. Yoshida, C. Ishihara, I. Azuma, J. Arikawa, Protective immunity of Hantaan virus nucleocapsid and envelope protein studied using baculovirus-expressed proteins. Arch. Virol. 130, 365–376 (1993)PubMedCrossRefGoogle Scholar
  44. 44.
    I. Kucinskaite-Kodze, R. Petraityte-Burneikiene, A. Zvirbliene, B. Hjelle, R.A. Medina, A. Gedvilaite, A. Razanskiene, J. Schmidt-Chanasit, M. Mertens, P. Padula, K. Sasnauskas, R.G. Ulrich, Characterization of monoclonal antibodies against hantavirus nucleocapsid protein and their use for immunohistochemistry on rodent and human samples. Arch. Virol. 156, 443–456 (2011)PubMedCrossRefGoogle Scholar
  45. 45.
    A. Plyusnin, J. Hörling, M. Kanerva, J. Mustonen, Y. Cheng, J. Partanen, O. Vapalahti, S.K. Kukkonen, J. Niemimaa, H. Henttonen, B. Niklasson, Å. Lundkvist, A. Vaheri, Puumala hantavirus genome in patients with nephropathia epidemica: correlation of PCR positivity with HLA haplotype and link to viral sequences in local rodents. J. Clin. Microbiol. 35, 1090–1096 (1997)PubMedGoogle Scholar
  46. 46.
    A. Razanskiene, J. Schmidt, A. Geldmacher, A. Ritzi, M. Niedrig, Å. Lundkvist, D.H. Krüger, H. Meisel, K. Sasnauskas, R. Ulrich, High yields of stable and highly pure nucleocapsid proteins of different hantaviruses can be generated in the yeast Saccharomyces cerevisiae. J. Biotechnol. 111, 319–333 (2004)PubMedCrossRefGoogle Scholar
  47. 47.
    A. Dargeviciute, K. Brus Sjölander, K. Sasnauskas, D.H. Krüger, H. Meisel, R. Ulrich, Å. Lundkvist, Yeast-expressed Puumala hantavirus nucleocapsid protein induces protection in a bank vole model. Vaccine 20, 3523–3531 (2002)PubMedCrossRefGoogle Scholar
  48. 48.
    J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)PubMedCrossRefGoogle Scholar
  49. 49.
    T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41, 95–98 (1999)Google Scholar
  50. 50.
    S. Braaker, G. Heckel, Transalpine colonisation and partial phylogeographic erosion by dispersal in the common vole Microtus arvalis. Mol. Ecol. 18, 2518–2531 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogentic trees. Mol. Biol. Evol. 4, 406–425 (1987)PubMedGoogle Scholar
  52. 52.
    S. Kumar, K. Tamura, M. Nei, Mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163 (2004)PubMedCrossRefGoogle Scholar
  53. 53.
    F. Ronquist, J.P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572 (2003)PubMedCrossRefGoogle Scholar
  54. 54.
    G.E. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)CrossRefGoogle Scholar
  55. 55.
    D. Posada, iModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008)PubMedCrossRefGoogle Scholar
  56. 56.
    K. Tamura, M. Nei, P.S. Kumar, Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl Acad. Sci. USA 101, 11030–11035 (2004)PubMedCrossRefGoogle Scholar
  57. 57.
    M.A. Miller, M.T. Holder, R. Vos, P.E. Midford, T. Liebowitz, L. Chan, P. Hoover, T. Warnow, The CIPRES Portals. CIPRES, http://www.phylo.org/sub_sections/portal. Accessed 4 Aug 2009 (Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa)
  58. 58.
    J.C. Wilgenbusch, D.L. Warren, D.L. Swofford, AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference (2004), http://ceb.csit.fsu.edu/awty
  59. 59.
    E.R. Kallio, J. Klingström, E. Gustafsson, T. Manni, A. Vaheri, H. Henttonen, O. Vapalahti, Å. Lundkvist, Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006)PubMedCrossRefGoogle Scholar
  60. 60.
    J. Hardestam, M. Simon, K.O. Hedlund, A. Vaheri, J. Klingström, Å. Lundkvist, Ex vivo stability of the rodent-borne Hantaan virus in comparison to that of arthropod-borne members of the Bunyaviridae family. Appl. Environ. Microbiol. 73, 2547–2551 (2007)PubMedCrossRefGoogle Scholar
  61. 61.
    S. Schex, G. Dobler, J. Riehm, J. Müller, S. Essbauer, Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector Borne Zoonotic Dis. (2010) [Epub ahead of print]Google Scholar
  62. 62.
    R.G. Ulrich, J. Schmidt-Chanasit, M. Schlegel, J. Jacob, H.-J. Pelz, M. Mertens, M. Wenk, T. Büchner, D. Masur, K. Sevke, M.H. Groschup, F.-W. Gerstengarbe, M. Pfeffer, R. Oehme, W. Wegener, M. Bemmann, L. Ohlmeyer, R. Wolf, H. Zoller, J. Koch, S. Brockmann, G. Heckel, S.S. Essbauer, Network “Rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections. Parasitol. Res. 103(Suppl. 1), 121–129 (2008)CrossRefGoogle Scholar
  63. 63.
    M. Razzauti, A. Plyusnina, H. Henttonen, A. Plyusnin, Accumulation of point mutations and reassortment of genomic RNA segments are involved in the microevolution of Puumala hantavirus in a bank vole (Myodes glareolus) population. J. Gen. Virol. 89, 1649–1660 (2008)PubMedCrossRefGoogle Scholar
  64. 64.
    A. Dekonenko, V. Yakimenko, A. Ivanov, V. Morozov, P. Nikitin, S. Khasanova, T. Dzagurova, E. Tkachenko, C. Schmaljohn, Genetic similarity of Puumala viruses found in Finland and Western Siberia and of the mitochondrial DNA of their rodent hosts suggests a common evolutionary origin. Infect. Genet. Evol. 3, 245–257 (2003)PubMedCrossRefGoogle Scholar
  65. 65.
    J. Schmidt-Chanasit, S. Essbauer, R. Petraityte, K. Yoshimatsu, K. Tackmann, F.J. Conraths, K. Sasnauskas, J. Arikawa, A. Thomas, M. Pfeffer, J.J. Scharninghausen, W. Splettstoesser, M. Wenk, G. Heckel, R.G. Ulrich, Extensive host sharing of Central European Tula virus. J. Virol. 84, 459–474 (2010)PubMedCrossRefGoogle Scholar
  66. 66.
    P. Kotlik, V. Deffontaine, S. Mascheretti, J. Zima, J.R. Michaux, J.B. Searle, A northern glacial refugium for bank voles (Clethrionomys glareolus). Proc. Natl Acad. Sci. USA 103, 14860–14864 (2006)PubMedCrossRefGoogle Scholar
  67. 67.
    G. Gerlach, K.F. Musolf, Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14(4), 1066–1074 (2000)CrossRefGoogle Scholar
  68. 68.
    B. Walser, G. Heckel, Microsatellite markers for the common vole (Microtus arvalis) and their cross-species utility. Conserv. Genet. 9, 479–481 (2008)CrossRefGoogle Scholar
  69. 69.
    M. Schweizer, L. Excoffier, G. Heckel, Fine-scale genetic structure and dispersal patterns in the common vole (Microtus arvalis). Mol. Ecol. 16, 2463–2473 (2007)PubMedCrossRefGoogle Scholar
  70. 70.
    G. Heckel, R. Burri, S. Fink, J.-F. Desmet, L. Excoffier, Genetic structure and colonization processes in European populations of the common vole, Microtus arvalis. Evolution 59, 2231–2242 (2005)PubMedGoogle Scholar
  71. 71.
    V. Deffontaine, R. Libois, P. Kotlik, R. Sommer, C. Nieberding, E. Paradis, J.B. Searle, J.R. Michaux, Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Mol. Ecol. 14, 1727–1739 (2005)PubMedCrossRefGoogle Scholar
  72. 72.
    V. Deffontaine, R. Ledevin, M.C. Fontaine, J.P. Quéré, S. Renaud, R. Libois, J.R. Michaux, A relict bank vole lineage highlights the biogeographic history of the Pyrenean region in Europe. Mol. Ecol. 18, 2489–2502 (2009)PubMedCrossRefGoogle Scholar
  73. 73.
    Å. Lundkvist, H. Meisel, D. Koletzki, H. Lankinen, F. Cifire, A. Geldmacher, C. Sibold, P. Gött, A. Vaheri, D.H. Krüger, R. Ulrich, Mapping of B-cell epitopes in the nucleocapsid protein of Puumala hantavirus. Viral Immunol. 15, 177–192 (2002)PubMedCrossRefGoogle Scholar
  74. 74.
    K. Yoshimatsu, J. Arikawa, M. Tamura, R. Yoshida, Å. Lundkvist, B. Niklasson, H. Kariwa, I. Azuma, Characterization of the nucleocapsid protein of Hantaan virus strain 76–118 using monoclonal antibodies. J. Gen. Virol. 77, 695–704 (1996)PubMedCrossRefGoogle Scholar
  75. 75.
    K.B. Sundström, M. Stoltz, N. Lagerqvist, Å. Lundkvist, K. Nemirov, J. Klingström, Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain. J. Virol. 85, 1747–1756 (2011)PubMedCrossRefGoogle Scholar
  76. 76.
    D. Samuel, K. Sasnauskas, L. Jin, A. Gedvilaite, R. Slibinskas, S. Beard, A. Zvirbliene, S.A. Oliveira, J. Staniulis, B. Cohen, D. Brown, Development of a measles specific IgM ELISA for use with serum and oral fluid samples using recombinant measles nucleoprotein produced in Saccharomyces cerevisiae. J. Clin. Virol. 28, 121–129 (2003)PubMedCrossRefGoogle Scholar
  77. 77.
    R. Slibinskas, D. Samuel, A. Gedvilaite, J. Staniulis, K. Sasnauskas, Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J. Biotechnol. 107, 115–124 (2004)PubMedCrossRefGoogle Scholar
  78. 78.
    M. Juozapaitis, A. Serva, A. Zvirbliene, R. Slibinskas, J. Staniulis, K. Sasnauskas, B.J. Shiell, L.F. Wang, W.P. Michalski, Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res. 124, 95–102 (2007)PubMedCrossRefGoogle Scholar
  79. 79.
    M. Juozapaitis, A. Serva, I. Kucinskaite, A. Zvirbliene, R. Slibinskas, J. Staniulis, K. Sasnauskas, B.J. Shiell, T.R. Bowden, W.P. Michalski, Generation of menangle virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. J. Biotechnol. 130, 441–447 (2007)PubMedCrossRefGoogle Scholar
  80. 80.
    M. Juozapaitis, A. Zvirbliene, I. Kucinskaite, I. Sezaite, R. Slibinskas, M. Coiras, F. de Ory Manchon, M.R. López-Huertas, P. Pérez-Breña, J. Staniulis, I. Narkeviciute, K. Sasnauskas, Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res. 133, 178–186 (2008)PubMedCrossRefGoogle Scholar
  81. 81.
    R. Petraityte, P.L. Tamosiunas, M. Juozapaitis, A. Zvirbliene, K. Sasnauskas, B. Shiell, G. Russell, J. Bingham, W.P. Michalski, Generation of Tioman virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. Virus Res. 145, 92–96 (2009)PubMedCrossRefGoogle Scholar
  82. 82.
    P.J. Padula, C.M. Rossi, M.O. Della Valle, P.V. Martinez, S.B. Colavecchia, A. Edelstein, S.D.L. Miguel, R.D. Rabinovich, E.L. Segura, Development and evaluation of a solid-phase enzyme immunoassay based on Andes hantavirus recombinant nucleoprotein. J. Med. Microbiol. 49, 149–155 (2000)PubMedGoogle Scholar
  83. 83.
    R. Petraityte, L. Jin, R. Hunjan, A. Razanskiene, A. Zvirbliene, K. Sasnauskas, Use of Saccharomyces cerevisiae-expressed recombinant nucleocapsid protein to detect Hantaan virus-specific immunoglobulin G (IgG) and IgM in oral fluid. Clin. Vaccine Immunol. 14, 1603–1608 (2007)PubMedCrossRefGoogle Scholar
  84. 84.
    R. Petraitytė, H. Yang, R. Hunjan, R. Ražanskienė, P. Dhanilall, R.G. Ulrich, K. Sasnauskas, L. Jin, Development and evaluation of serological assays for detection of Hantaan virus-specific antibodies in human sera using yeast-expressed nucleocapsid protein. J. Virol. Methods 148, 89–95 (2008)PubMedCrossRefGoogle Scholar
  85. 85.
    K. Brus Sjölander, F. Elgh, H. Kallio-Kokko, O. Vapalahti, M. Hägglund, V. Palmcrantz, P. Juto, A. Vaheri, B. Niklasson, Å. Lundkvist, Evaluation of serological methods for diagnosis of Puumala hantavirus infection (nephropathia epidemica). J. Clin. Microbiol. 35, 3264–3268 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marc Mertens
    • 1
  • Eveline Kindler
    • 2
  • Petra Emmerich
    • 3
  • Jutta Esser
    • 4
  • Christiane Wagner-Wiening
    • 5
  • Roman Wölfel
    • 6
  • Rasa Petraityte-Burneikiene
    • 7
  • Jonas Schmidt-Chanasit
    • 3
  • Aurelija Zvirbliene
    • 7
  • Martin H. Groschup
    • 1
  • Gerhard Dobler
    • 8
  • Martin Pfeffer
    • 9
  • Gerald Heckel
    • 2
    • 10
  • Rainer G. Ulrich
    • 1
  • Sandra S. Essbauer
    • 8
  1. 1.Institute for Novel and Emerging Infectious DiseasesFriedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel RiemsGermany
  2. 2.Computational and Molecular Population Genetics (CMPG), Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  3. 3.Diagnostic Virology LaboratoryBernhard-Nocht-Institute for Tropical MedicineHamburgGermany
  4. 4.Labor Enzenauer und Kollegen, Abteilung SerologieOsnabrückGermany
  5. 5.Landesgesundheitsamt Baden-Württemberg, Regierungspräsidium StuttgartStuttgartGermany
  6. 6.Department of Medical Bioreconnaissance and VerificationBundeswehr Institute of MicrobiologyMunichGermany
  7. 7.VU Institute of BiotechnologyVilniusLithuania
  8. 8.Department of Virology & RickettsiologyBundeswehr Institute of MicrobiologyMunichGermany
  9. 9.Institute of Animal Hygiene and Veterinary Public Health, Veterinary FacultyUniversity of LeipzigLeipzigGermany
  10. 10.Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland

Personalised recommendations