Virus Genes

, Volume 42, Issue 2, pp 297–306

Integration specificity of LTR-retrotransposons and retroviruses in the Drosophila melanogaster genome

Article

Abstract

Integration of DNA copies in a host genome is a necessary stage in the life cycle of retroviruses and LTR-retrotransposons. There is still no clear understanding of integration specificity of retroelements into a target site. The selection of the target DNA is believed to potentially affect a number of factors such as transcriptional status, association with histones and other DNA-binding proteins, and DNA bending. The authors performed a comprehensive computer analysis of the integration specificity of Drosophilamelanogaster LTR-retrotransposons and retroviruses including an analysis of the nucleotide composition of targets, terminal sequences of LTRs, and integrase sequences. A classification of LTR-retrotransposons based on the integration specificity was developed. All the LTR-retrotransposons of the gypsy group with three open frames (errantiviruses) and their derivatives with two open frames demonstrate strict specificity to a target DNA selection. Such specificity correlates with the structural features of the target DNA: bendability, A-philicity, or protein-induced deformability. The remaining LTR-retrotransposons (copia and BEL groups, blastopia and 412 subgroups of the gypsy group) do not show specificity of integration. Chromodomain is present in the integrase structures of blastopia and 412 subgroup LTR-retrotransposons and may facilitate the process of non-specific integration.

Keywords

Retrotransposons Retroviruses Drosophila Integration Target 

References

  1. 1.
    S.F. Le Grice, Biochemistry 42(49), 14349–14355 (2003)PubMedCrossRefGoogle Scholar
  2. 2.
    P. Hindmarsh, J. Leis, Microbiol. Mol. Biol. Rev. 63(4), 836–843 (1999)PubMedGoogle Scholar
  3. 3.
    M.K. Lewinski, F.D. Bushman, Adv. Genet. 55, 147–181 (2005)PubMedCrossRefGoogle Scholar
  4. 4.
    P.A. Rice, T.A. Baker, Nat. Struct. Bio. 8(5), 302–307 (2001)CrossRefGoogle Scholar
  5. 5.
    H.E. Brown, H. Chen, A. Engelman, J. Virol. 73(11), 9011–9020 (1999)PubMedGoogle Scholar
  6. 6.
    R.L. LaFemina, P.L. Callahan, M.G. Cordingley, J. Virol. 65, 5624–5630 (1991)PubMedGoogle Scholar
  7. 7.
    D. Pruss, R. Reeves, F.D. Bushman, A.P. Wolffe, J. Biol. Chem. 269(40), 25031–25041 (1994)PubMedGoogle Scholar
  8. 8.
    H.P. Müller, H.E. Varmus, EMBO J. 13(19), 4704–4714 (1994)PubMedGoogle Scholar
  9. 9.
    R.S. Mitchell, B.F. Beitzel, A.R. Schroder, P. Shinn, H. Chen, C.C. Berry, J.R. Ecker, F.D. Bushman, PLoS Biol. 2(8), E234 (2004)PubMedCrossRefGoogle Scholar
  10. 10.
    X. Wu, Y. Li, B. Crise, S.M. Burgess, D.J. Munroe, J. Virol. 79(8), 5211–5214 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    A.B. Kuzin, N.V. Lyubomirskaya, B.M. Khudaibergenova, Y.V. Ilyin, A.I. Kim, Nucleic Acids Res. 22(22), 4641–4645 (1994)PubMedCrossRefGoogle Scholar
  12. 12.
    L.N. Nefedova, N.V. Ljubomirskaya, Yu.V. Ilyin, A.I. Kim, Russ. J. Genet. 42(12), 1656–1663 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Kim, C. Terzian, P. Santamaria, A. Pélisson, N. Prud’homme, A. Bucheton, PNAS USA 91, 1285–1289 (1994)PubMedCrossRefGoogle Scholar
  14. 14.
    S.U. Song, T. Gerasimova, M. Kurkulos, J.D. Boeke, V.G. Corces, Genes Dev. 8, 2046–2057 (1994)PubMedCrossRefGoogle Scholar
  15. 15.
    J.D. Boeke, T.H. Eickbush, S.B. Sandmeyer, D.F. Voytas D.F, in ICTVdB—The Universal Virus Database, version 4, New York, 2006, ed. by C. Büchen-Osmond, http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_index.htm
  16. 16.
    J.S. Kaminker, C.M. Bergman, B. Kronmiller, J. Carlson, R. Svirskas, S. Patel, E. Frise, D.A. Wheeler, S.E. Lewis, G.M. Rubin, M. Ashburner, S.E. Celniker, Genome Biol. 3(12), RESEARCH0084 (2002)PubMedCrossRefGoogle Scholar
  17. 17.
    N.J. Bowen, J.F. McDonald, Genome Res. 11, 1527–1540 (2001)PubMedCrossRefGoogle Scholar
  18. 18.
    L.N. Nefedova, A.I. Kim, Mol. Biol. (Mosk.) 43(5), 747–756 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Terzian, A. Pelisson, A. Bucheton, BMC Evol. Biol. 1, 3 (2001)PubMedCrossRefGoogle Scholar
  20. 20.
    I. Brukner, R. Sánchez, D. Suck, S. Pongor, EMBO J. 14(8), 1812–1818 (1995)PubMedGoogle Scholar
  21. 21.
    M.A. O’Neill, J.K. Barton, PNAS USA 99(26), 16543–16550 (2002)PubMedCrossRefGoogle Scholar
  22. 22.
    N.C. Horton, B.C. Finzel, J. Mol. Biol. 264(3), 521–533 (1996)PubMedCrossRefGoogle Scholar
  23. 23.
    V.I. Ivanov, L.E. Minchenkova, Mol. Biol. (Mosk.) 28(6), 1258–1271 (1994)Google Scholar
  24. 24.
    D.M. Crothers, PNAS USA 95(26), 15163–15165 (1998)PubMedCrossRefGoogle Scholar
  25. 25.
    C. Berry, S. Hannenhalli, J. Leipzig, F.D. Bushman, PLoS Comput. Biol. 2(11), e157 (2006)PubMedCrossRefGoogle Scholar
  26. 26.
    E.S. Svarovskaia, S.R. Cheslock, W.H. Zhang, W.S. Hu, V.K. Pathak, Front. Biosci. 8, d117–d134 (2003)PubMedCrossRefGoogle Scholar
  27. 27.
    T.D. Mashkova, N.Y. Oparina, M.H. Lacroix, L.I. Fedorova, I.G. Tumeneva, O.L. Zinovieva, L.L. Kisselev, J. Mol. Biol. 305(1), 33–48 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    O. Delelis, K. Carayon, A. Saïb, E. Deprez, J.F. Mouscadet, Retrovirology 5, 114 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    A.M. Woerner, C.J. Marcus-Sekura, Nucleic Acids Res. 21(15), 3507–3511 (1993)PubMedCrossRefGoogle Scholar
  30. 30.
    M. Katzman, M. Sudol, J. Virol. 72(3), 1744–1753 (1998)PubMedGoogle Scholar
  31. 31.
    Z. Wu, G. Chaconas, EMBO J. 14, 3835–3843 (1995)PubMedGoogle Scholar
  32. 32.
    R.A. Lutzke, C. Vint, R.H. Plasterk, Nucleic Acids Res. 22, 4125–4131 (1994)PubMedCrossRefGoogle Scholar
  33. 33.
    A.D. Leavitt, L. Shiue, H.E. Varmus, J. Biol. Chem. 268(3), 2113–2119 (1993)PubMedGoogle Scholar
  34. 34.
    T.M. Jenkins, D. Esposito, A. Engelman, R. Craigie, EMBO J. 16, 6849–6859 (1997)PubMedCrossRefGoogle Scholar
  35. 35.
    J.L. Gerton, S. Ohgi, M. Olsen, J. DeRisi, P.O. Brown, J. Virol. 72, 5046–5055 (1998)PubMedGoogle Scholar
  36. 36.
    D. Esposito, R. Craigie, EMBO J. 17, 5832–5843 (1998)PubMedCrossRefGoogle Scholar
  37. 37.
    A.L. Harper, L.M. Skinner, M. Sudol, M. Katzman, J. Virol. 75(16), 7756–7762 (2001)PubMedCrossRefGoogle Scholar
  38. 38.
    R. Paro, D.S. Hogness, PNAS USA 88(1), 263–267 (1991)PubMedCrossRefGoogle Scholar
  39. 39.
    H.S. Malik, T.H. Eickbush, J. Virol. 73(6), 5186–9510 (1999)PubMedGoogle Scholar
  40. 40.
    F.D. Bushman, A. Engelman, I. Palmer, P. Wingfield, R. Craigie, PNAS USA 90, 3428–3432 (1993)PubMedCrossRefGoogle Scholar
  41. 41.
    A.R. Schröder, P. Shinn, H. Chen, C. Berry, J.R. Ecker, F. Bushman, Cell 110(4), 521–552 (2002)PubMedCrossRefGoogle Scholar
  42. 42.
    A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig, P. Shinn, J.R. Ecker, F. Bushman, Nat. Med. 11(12), 1287–1289 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations