Virus Genes

, Volume 41, Issue 2, pp 149–157 | Cite as

The pleiotropic protein kinase CK2 phosphorylates HTLV-1 Tax protein in vitro, targeting its PDZ-binding motif

  • Carlo BidoiaEmail author
  • Marco Mazzorana
  • Mario A. Pagano
  • Giorgio Arrigoni
  • Flavio Meggio
  • Lorenzo A. Pinna
  • Umberto Bertazzoni


The HTLV-1 transactivator Tax is an oncoprotein capable of deregulating the expression of many cellular genes and interfering with signalling pathways. Here we show that Tax-1 is phosphorylated in vitro by the pleiotropic human serine/threonine kinase CK2 at three residues, Ser-336, Ser-344 and Thr-351, close to and within its C-terminal PDZ-binding motif. We also show that the mutation of Thr-351 to aspartate abolishes Tax-1 binding to the scaffold protein hDlg, a tumour suppressor factor, while having no effect on transactivation. These results suggest that CK2, whose constitutive activity is often hijacked by viruses to sustain their vital cycle, could modulate Tax-1 oncogenic interactions.


CK2 Tax-1 HTLV PDZ PDZ-binding motif PBM 



This work was supported in part by the following grants to Umberto Bertazzoni: MIUR PRIN 2007, Fondazione Cariverona 2008 and AIRC Regional Program 2008. The authors express their thanks to Prof. Lucy Rasmussen (Stanford University) for a critical reading of the paper, to Lawrence Banks (International Centre for Genetic Engineering and Biotechnology, Trieste, Italy) for the plasmid expressing HA-hDlg, and to Françoise Bex (Université Libre de Bruxelles, Bruxelles, Belgium) for the plasmid containing the cDNA of Tax-1.


  1. 1.
    R. Grassmann, M. Aboud, K.T. Jeang, Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24, 5976–5985 (2005)CrossRefPubMedGoogle Scholar
  2. 2.
    M. Matsuoka, K.T. Jeang, Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat. Rev. Cancer 7, 270–280 (2007)CrossRefPubMedGoogle Scholar
  3. 3.
    H. Hasegawa, H. Sawa, M.J. Lewis et al., Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat. Med. 12, 466–472 (2006)CrossRefPubMedGoogle Scholar
  4. 4.
    T. Ohsugi, T. Kumasaka, S. Okada et al., The Tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells. Nat. Med. 13, 527–528 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    I. Azran, Y. Schavinsky-Khrapunsky, M. Aboud, Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 1, 20 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    K.T. Jeang, C.Z. Giam, M. Nerenberg et al., Abundant synthesis of functional human T-cell leukemia virus type I p40x protein in eucaryotic cells by using a baculovirus expression vector. J. Virol. 61, 708–713 (1987)PubMedGoogle Scholar
  7. 7.
    I. Lamsoul, J. Lodewick, S. Lebrun et al., Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Mol. Cell. Biol. 25, 10391–10406 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    F. Bex, K. Murphy, R. Wattiez et al., Phosphorylation of the human T-cell leukemia virus type 1 transactivator tax on adjacent serine residues is critical for tax activation. J. Virol. 73, 738–745 (1999)PubMedGoogle Scholar
  9. 9.
    S.S. Durkin, M.D. Ward, K.A. Fryrear et al., Site-specific phosphorylation differentiates active from inactive forms of the human T-cell leukemia virus type 1 Tax oncoprotein. J. Biol. Chem. 281, 31705–31712 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    H. Nyunoya, T. Akagi, T. Ogura et al., Evidence for phosphorylation of trans-activator p40x of human T-cell leukemia virus type I produced in insect cells with a baculovirus expression vector. Virology 167, 538–544 (1988)PubMedGoogle Scholar
  11. 11.
    O.J. Semmes, K.T. Jeang, Mutational analysis of human T-cell leukemia virus type I Tax: regions necessary for function determined with 47 mutant proteins. J. Virol. 66, 7183–7192 (1992)PubMedGoogle Scholar
  12. 12.
    L. Willems, C. Grimonpont, P. Kerkhofs et al., Phosphorylation of bovine leukemia virus Tax protein is required for in vitro transformation but not for transactivation. Oncogene 16, 2165–2176 (1998)CrossRefPubMedGoogle Scholar
  13. 13.
    L.A. Pinna, Protein kinase CK2: a challenge to canons. J. Cell Sci. 115, 3873–3878 (2002)CrossRefPubMedGoogle Scholar
  14. 14.
    P. Massimi, N. Narayan, M. Thomas et al., Regulation of the hDlg/hScrib/Hugl-1 tumour suppressor complex. Exp. Cell Res. 314, 3306–3317 (2008)CrossRefPubMedGoogle Scholar
  15. 15.
    S.A. Chevalier, L. Meertens, S. Calattini et al., Presence of a functional but dispensable nuclear export signal in the HTLV-2 Tax protein. Retrovirology 2, 70 (2005)CrossRefPubMedGoogle Scholar
  16. 16.
    S. Sarno, M. Ruzzene, P. Frascella et al., Development and exploitation of CK2 inhibitors. Mol. Cell. Biochem. 274, 69–76 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    C. Falciani, L. Lozzi, A. Pini et al., Bioactive peptides from libraries. Chem. Biol. 12, 417–426 (2005)CrossRefPubMedGoogle Scholar
  18. 18.
    M.A. Pagano, G. Arrigoni, O. Marin et al., Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47, 7925–7936 (2008)CrossRefPubMedGoogle Scholar
  19. 19.
    M. Turci, J. Lodewick, P. Righi et al., HTLV-2B Tax oncoprotein is modified by ubiquitination and sumoylation and displays intracellular localization similar to its homologue HTLV-1 Tax. Virology 386, 6–11 (2009)CrossRefPubMedGoogle Scholar
  20. 20.
    F. Meggio, B. Boldyreff, O.G. Issinger et al., Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55–64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33, 4336–4342 (1994)CrossRefPubMedGoogle Scholar
  21. 21.
    O. Marin, F. Meggio, G. Draetta et al., The consensus sequences for cdc2 kinase and for casein kinase-2 are mutually incompatible. A study with peptides derived from the beta-subunit of casein kinase-2. FEBS Lett. 301, 111–114 (1992)CrossRefPubMedGoogle Scholar
  22. 22.
    F. Meggio, L.A. Pinna, One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    J. Kock, M. Kann, G. Putz et al., Central role of a serine phosphorylation site within duck hepatitis B virus core protein for capsid trafficking and genome release. J. Biol. Chem. 278, 28123–28129 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    W. Zheng, D. Schwarzer, A. Lebeau et al., Cellular stability of serotonin N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. J. Biol. Chem. 280, 10462–10467 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    L. Xie, B. Yamamoto, A. Haoudi et al., PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. Blood 107, 1980–1988 (2006)CrossRefPubMedGoogle Scholar
  26. 26.
    M.R. Smith, W.C. Greene, Identification of HTLV-I tax trans-activator mutants exhibiting novel transcriptional phenotypes. Genes Dev. 4, 1875–1885 (1990)CrossRefPubMedGoogle Scholar
  27. 27.
    T. Suzuki, Y. Ohsugi, M. Uchida-Toita et al., Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein, hDLG, and perturbs its function in cell growth control. Oncogene 18, 5967–5972 (1999)CrossRefPubMedGoogle Scholar
  28. 28.
    R. Rousset, S. Fabre, C. Desbois et al., The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene 16, 643–654 (1998)CrossRefPubMedGoogle Scholar
  29. 29.
    C. Arpin-Andre, J.M. Mesnard, The PDZ domain-binding motif of the human T cell leukemia virus type 1 tax protein induces mislocalization of the tumor suppressor hScrib in T cells. J. Biol. Chem. 282, 33132–33141 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    C. Song, W. Wang, M. Li et al., Tax1 enhances cancer cell proliferation via Ras-Raf-MEK-ERK signaling pathway. IUBMB Life 61, 685–692 (2009)CrossRefPubMedGoogle Scholar
  31. 31.
    M. Ohashi, M. Sakurai, M. Higuchi et al., Human T-cell leukemia virus type 1 Tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 320, 52–62 (2004)CrossRefPubMedGoogle Scholar
  32. 32.
    M. Higuchi, C. Tsubata, R. Kondo et al., Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J. Virol. 81, 11900–11907 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    T. Shoji, M. Higuchi, R. Kondo et al., Identification of a novel motif responsible for the distinctive transforming activity of human T-cell leukemia virus (HTLV) type 1 Tax1 protein from HTLV-2 Tax2. Retrovirology 6, 83 (2009)CrossRefPubMedGoogle Scholar
  34. 34.
    X. Yan, H. Zhou, J. Zhang et al., Molecular mechanism of inward rectifier potassium channel 2.3 regulation by tax-interacting protein-1. J. Mol. Biol. 392, 967–976 (2009)CrossRefPubMedGoogle Scholar
  35. 35.
    A.Y. Hung, M. Sheng, PDZ domains: structural modules for protein complex assembly. J. Biol. Chem. 277, 5699–5702 (2002)CrossRefPubMedGoogle Scholar
  36. 36.
    P. von Nandelstadh, M. Ismail, C. Gardin et al., A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: a common link for Z-disc myopathies. Mol. Cell. Biol. 29, 822–834 (2009)CrossRefGoogle Scholar
  37. 37.
    A. Yueh, S.P. Goff, Phosphorylated serine residues and an arginine-rich domain of the moloney murine leukemia virus p12 protein are required for early events of viral infection. J. Virol. 77, 1820–1829 (2003)CrossRefPubMedGoogle Scholar
  38. 38.
    R.T. Javier, Cell polarity proteins: common targets for tumorigenic human viruses. Oncogene 27, 7031–7046 (2008)CrossRefPubMedGoogle Scholar
  39. 39.
    T. Aoyagi, M. Takahashi, M. Higuchi et al., The PDZ domain binding motif (PBM) of human T-cell leukemia virus type 1 Tax can be substituted by heterologous PBMs from viral oncoproteins during T-cell transformation. Virus Genes 40, 193–199 (2010)CrossRefPubMedGoogle Scholar
  40. 40.
    N.A. St-Denis, D.W. Litchfield, Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell. Mol. Life Sci. 66, 1817–1829 (2009)CrossRefPubMedGoogle Scholar
  41. 41.
    J.H. Trembley, G. Wang, G. Unger et al., Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell. Mol. Life Sci. 66, 1858–1867 (2009)CrossRefPubMedGoogle Scholar
  42. 42.
    S. Sarno, L.A. Pinna, Protein kinase CK2 as a druggable target. Mol. Biosyst. 4, 889–894 (2008)CrossRefPubMedGoogle Scholar
  43. 43.
    M.A. Larkin, G. Blackshields, N.P. Brown et al., Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carlo Bidoia
    • 1
    • 5
    Email author
  • Marco Mazzorana
    • 2
    • 3
  • Mario A. Pagano
    • 4
  • Giorgio Arrigoni
    • 4
  • Flavio Meggio
    • 4
  • Lorenzo A. Pinna
    • 2
    • 4
  • Umberto Bertazzoni
    • 1
  1. 1.Department of Life and Reproduction Sciences, Section of Biology and GeneticsUniversity of VeronaVeronaItaly
  2. 2.Venetian Institute for Molecular MedicinePadovaItaly
  3. 3.Structural Biology and Biocomputing Programme CNIO - Centro Nacional de Investigaciones OncológicasMadridSpain
  4. 4.Department of Biological ChemistryUniversity of PaduaPadovaItaly
  5. 5.Centre for Research in Infectious Diseases, School of Medicine and Medical ScienceUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations