Virus Genes

, Volume 40, Issue 2, pp 293–297 | Cite as

Complete genome sequence of an Argentinean isolate of Solenopsis invicta virus 3

  • Steven M. Valles
  • Clare Allen
  • Laura Varone
  • Juan Briano


Solenopsis invicta virus 3 (SINV-3) is a recently described positive-strand RNA virus that infects the red imported fire ant, S. invicta. The genome of an Argentinean isolate of Solenopsis invicta virus 3 (SINV-3ArgSF) obtained from the Santa Fe region of Argentina was sequenced in entirety. Assembly of nine overlapping fragments yielded a consensus genome sequence 10,386 nucleotides long, excluding the poly(A) tail present on the 3′ end (Genbank accession number GU017972). With the exception of the poly(A) tail, the genome length of SINV-3ArgSF was identical to the North American isolate (SINV-3USDM). The SINV-3ArgSF genome possessed three major open reading frames (ORFs) (comprised of ≥100 codons) in the sense orientation; SINV-3USDM possessed only two. ORFs 1 and 2 had identical start and stop genome positions for both isolates. Blastp analysis of the translated ORF 1 of SINV-3ArgSF recognized conserved domains for helicase, protease, and RNA-dependent RNA polymerase. These domains and their corresponding positions were identical to those reported for SINV-3USDM. ORF 2a, unique to the SINV-3ArgSF genome, was also found in frame 2 and had a canonical start codon located at nucleotide position 8,351 and a stop codon ending at position 8,827. Blastp analysis of the translated amino acid sequence of ORF 2a revealed no significant similarity in the Genbank database. The two SINV-3 isolates exhibited 96.2% nucleotide sequence identity across the entire genome. The amino acid sequences of ORFs 1 and 2 exhibited higher identities (99.0 and 98.2%, respectively) than the corresponding nucleotide regions within the genome. These data indicated that the nucleotide differences between the SINV-3 isolates were largely synonymous. This observation was corroborated by codon substitution rate analysis. Thus, the majority of the SINV-3 codon changes were silent in the two polyproteins, indicating purifying selection pressure on the viral genome.


Solenopsis invicta RNA virus Genome sequence SINV-3 


  1. 1.
    S.M. Valles, Y. Hashimoto, Virology 388, 354–361 (2009)CrossRefPubMedGoogle Scholar
  2. 2.
    D.L. Cox-Foster, S. Conlan, E.C. Holmes, G. Palacios, J.D. Evans, N.A. Moran, P. Quan, T. Briese, M. Hornig, M. Geiser, V. Martinson, D. VanEngelsdorp, A.L. Kalkstein, A. Drysdale, J. Hui, J. Ahai, L. Cui, S.K. Hutchinson, J.F. Simons, M. Egholm, J. Pettis, W.I. Lipkin, Science 318, 283–287 (2007)CrossRefPubMedGoogle Scholar
  3. 3.
    D.F. Williams, H.L. Collins, D.H. Oi, Am. Entomol. 47, 146–159 (2001)Google Scholar
  4. 4.
    S.M. Valles, L. Varone, L. Ramirez, J. Briano, J. Virol. Methods 162, 276–279 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    E.J. Caldera, K.G. Ross, C.J. DeHeer, D. Shoemaker, Biol. Invasions 10, 1457–1479 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Biek, A.J. Drummond, M. Poss, Science 311, 538–541 (2006)CrossRefPubMedGoogle Scholar
  7. 7.
    Z. Yang, Comput. Appl. Biosci. 13, 555–556 (1997)PubMedGoogle Scholar
  8. 8.
    Z. Yang, Mol. Biol. Evol. 24, 1586–1591 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    K. Tamura, J. Dudley, M. Nei, S. Kumar, Mol. Biol. Evol. 24, 1596–1599 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    M. Nei, T. Gojobori, Mol. Biol. Evol. 3, 418–426 (1986)PubMedGoogle Scholar
  11. 11.
    Z. Yang, R. Nielsen, Mol. Biol. Evol. 17, 32–43 (2000)PubMedGoogle Scholar
  12. 12.
    M. Mokrejs, T. Masek, V. Vopalensky, P. Hlubucek, P. Delbos, and M. Pospisek, Nucleic Acids Res. (in press)Google Scholar
  13. 13.
    M. Mokrejs, V. Vopalensky, O. Kolenaty, T. Masek, Z. Feketova, P. Sekyrova, B. Skaloudova, V. Kriz, M. Pospisek, Nucleic Acids Res. 34, D125–D130 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Nucleic Acids Res. 25, 3389–3402 (1997)CrossRefPubMedGoogle Scholar
  15. 15.
    M.D. Michelitsch, J.S. Weissman, Proc. Natl Acad. Sci. USA 97, 11910–11915 (2000)CrossRefPubMedGoogle Scholar
  16. 16.
    L. Cruzeiro, J. Phys.: Condens. Matter 17, 7833–7844 (2005)CrossRefGoogle Scholar
  17. 17.
    E.V. Koonin, V.V. Dolja, Crit. Rev. Biochem. Mol. Biol. 28, 375–430 (1993)CrossRefPubMedGoogle Scholar
  18. 18.
    L.A. Shackelton, C.R. Parrish, U. Truyen, E.C. Holmes, Proc. Natl Acad. Sci. USA 102, 379–384 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    A.M. Callcott, H.L. Collins, Fla. Entomol. 79, 240–251 (1996)CrossRefGoogle Scholar
  20. 20.
    K.I. McCubbin, J.M. Weiner, Med. J. Aust. 176, 518–519 (2002)PubMedGoogle Scholar
  21. 21.
    R. Zhang, Y. Li, N. Liu, S.D. Porter, Fla. Entomol. 90, 723–731 (2007)CrossRefGoogle Scholar
  22. 22.
    T.C. Huang, Y.C. Chou, and H.C. Chou, C.J. Shih, and W.J. Wu (eds.), in Proceedings of the Symposium on the Control of the Red Imported Fire Ant. Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Taipei, 2004, pp. 1–13Google Scholar
  23. 23.
    L.W. Morrison, S.D. Porter, E. Daniels, M.D. Korzukhin, Biol. Invasions 6, 183–191 (2004)CrossRefGoogle Scholar
  24. 24.
    J.J. Holland, K. Spindler, F. Horodyski, E. Grabau, S. Nichol, S. VandePol, Science 215, 1577–1585 (1982)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Steven M. Valles
    • 1
  • Clare Allen
    • 1
  • Laura Varone
    • 2
  • Juan Briano
    • 2
  1. 1.Center for Medical, Agricultural and Veterinary EntomologyUSDA-ARSGainesvilleUSA
  2. 2.South American Biological Control LaboratoryUSDA-ARSHurlinghamArgentina

Personalised recommendations