Virus Genes

, Volume 39, Issue 1, pp 146–152 | Cite as

Identification and characterization of a novel Tritimovirus species isolated from wild Trisetum flavescens L., family Poaceae

  • Mohamed Hassan
  • Lenka Širlova
  • Milan Jokeš
  • Josef Vacke


Yellow oat-grass plants (Trisetum flavescens L.) with mild mosaic and pronounced dwarfing symptoms were observed at different locations in the Czech Republic. Electron microscope observations of symptomatic plants revealed the presence of filamentous particles and inclusion bodies characteristic of the family Potyviridae. The virus was readily mechanically transmitted to its original host plus a narrow host range of monocot species. Serological assays of infected plant extracts using antiserum specific to the closest species in the family Potyviridae were negative. The 3′ end of the viral genome was cloned, sequenced and compared to sequences of species in the family Potyviridae. The virus is more closely related to viruses in the genus Tritimovirus than to other genera within the Potyviridae. Based on phylogenetic analyses of the coat protein cistron and flanking genomic regions, we propose this is a distinct viral species of the genus Tritimovirus, tentatively named Yellow oat-grass mosaic virus (YOgMV).


Potyviridae Tritimovirus Virus taxonomy Yellow oat-grass 



The authors thank Dr. Keith L. Perry (Cornell University, USA) for the critical reading of the manuscript. We thank Miss. M. Bouzková for her excellent technical assistance. This work was supported by the Ministry of Agriculture of the Czech Republic, Project No. MZe 0002700603.


  1. 1.
    J.D. Wren, M.J. Roossinck, R.S. Nelson, K. Scheets, M.W. Palmer, U. Melcher, PLoS Biol. 4, e80 (2006). doi: 10.1371/journal.pbio.0040080 PubMedCrossRefGoogle Scholar
  2. 2.
    U. Melcher, V. Muthukumar, G.B. Wiley, B.E. Min, M.W. Palmer, J. Verchot-Lubicz, A. Ali, R.S. Nelson, B.A. Roe, V. Thapa, M.L. Pierce, J. Virol. Methods 152, 49–55 (2008). doi: 10.1016/j.jviromet.2008.05.030 PubMedCrossRefGoogle Scholar
  3. 3.
    P.H. Berger, M.J. Adams, O.W. Barnett, A.A. Brunt, J. Hammond, J.H. Hill, R.L. Jordan, S. Kashiwazaki, E. Rybicki, N. Spence, D.C. Stenger, S.T. Ohki, I. Uyeda, A. van Zaayen, J. Valkonen, H.J. Vetten, in 8th Rep. ICTV, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball (Elsevier Academic Press, San Diego, CA, 2005), pp. 819–841Google Scholar
  4. 4.
    F. Rabenstein, J. Schubert, Genus Rymovirus, in Virus and Virus Diseases of Poaceae (INRA Publication, Paris, 2004), pp. 395–401Google Scholar
  5. 5.
    S.N. Salm, M.E.C. Rey, E.P. Rybicki, Arch. Virol. 141, 2237–2242 (1996). doi: 10.1007/BF01718229 PubMedCrossRefGoogle Scholar
  6. 6.
    D.C. Stenger, R. French, Arch. Virol. 149, 633–640 (2004). doi: 10.1007/s00705-003-0237-z PubMedCrossRefGoogle Scholar
  7. 7.
    M. Rastegar, K. Izadpanah, M. Masumi, M. Siampour, A. Zare, A. Afsharifar, Virus Genes 37, 212–217 (2008). doi: 10.1007/s11262-008-0252-y PubMedCrossRefGoogle Scholar
  8. 8.
    R. Koenig, D.E. Lesemann, J. Phytopathol. 118, 105–116 (1985)Google Scholar
  9. 9.
    E.S. Reynolds, J. Cell Biol. 17, 208–212 (1963). doi: 10.1083/jcb.17.1.208 PubMedCrossRefGoogle Scholar
  10. 10.
    A. Gibbs, A. Mackenzie, J. Virol. Methods 63, 9–16 (1997). doi: 10.1016/S0166-0934(96)02103-9 PubMedCrossRefGoogle Scholar
  11. 11.
    J. Sambrook, D.W. Russell, A Laboratory Manual, 3rd edn. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 2001)Google Scholar
  12. 12.
    M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T.L. Madden, Nucleic Acids Res. 36, W5–W9 (2008). doi: 10.1093/nar/gkn201 PubMedCrossRefGoogle Scholar
  13. 13.
    M.J. Adams, J.F. Antoniw, Nucleic Acids Res 34, 382–385 (2006). doi: 10.1093/nar/gkj023 CrossRefGoogle Scholar
  14. 14.
    T.A. Hall, Nucleic Acids Symp. Ser. 41, 95–98 (1999)Google Scholar
  15. 15.
    K.B. Nicholas, H.B. Nicholas, Pittsburgh Supercomputing Center, Pittsburgh (1997)Google Scholar
  16. 16.
    K. Tamura, J. Dudley, M. Nei, S. Kumar, Mol. Biol. Evol. 24, 1596–1599 (2007). doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  17. 17.
    D.D. Shukla, C.W. Ward, A.A. Brunt, CAB International, Wallingford, UK (1994)Google Scholar
  18. 18.
    C.C. Gill, Can. J. Bot. 52, 621–626 (1974). doi: 10.1139/b74-078 CrossRefGoogle Scholar
  19. 19.
    G. Kamer, P. Agros, Nucleic Acids Res. 12, 7269–7282 (1984). doi: 10.1093/nar/12.18.7269 PubMedCrossRefGoogle Scholar
  20. 20.
    C.D. Atreya, B. Raccah, T.P. Pirone, Virology 178, 161–165 (1990). doi: 10.1016/0042-6822(90)90389-9 PubMedCrossRefGoogle Scholar
  21. 21.
    C. Jacquet, B. Delecolle, B. Raccah, H. Lecoq, J. Dunez, M. Ravelonandro, J. Gen. Virol. 79, 1509–1517 (1998)PubMedGoogle Scholar
  22. 22.
    M.J. Adams, J.F. Antoniw, C.M. Fauquet, Arch. Virol. 150, 459–479 (2005). doi: 10.1007/s00705-004-0440-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohamed Hassan
    • 1
    • 2
  • Lenka Širlova
    • 2
  • Milan Jokeš
    • 2
  • Josef Vacke
    • 2
  1. 1.Agricultural Botany Department (Plant Pathology Sector), Faculty of AgricultureFayoum UniversityFayoumEgypt
  2. 2.Department of VirologyCrop Research InstitutePrague 6Czech Republic

Personalised recommendations